Terminal control of a nonlinear process under disturbances
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 113-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a nonlinear model of motion of a solid body with deficiency of control parameters. The model contains a disturbance parameter. We propose an open-loop control that takes the system from a given initial state to a given terminal state. Results of numerical calculations are presented for the dynamics of the components of the phase vector and of the controls.
Keywords: terminal control, open-loop control, dynamic game.
@article{TIMM_2016_22_2_a12,
     author = {N. L. Grigorenko and A. E. Rumyantsev},
     title = {Terminal control of a nonlinear process under disturbances},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {113--121},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a12/}
}
TY  - JOUR
AU  - N. L. Grigorenko
AU  - A. E. Rumyantsev
TI  - Terminal control of a nonlinear process under disturbances
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 113
EP  - 121
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a12/
LA  - ru
ID  - TIMM_2016_22_2_a12
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%A A. E. Rumyantsev
%T Terminal control of a nonlinear process under disturbances
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 113-121
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a12/
%G ru
%F TIMM_2016_22_2_a12
N. L. Grigorenko; A. E. Rumyantsev. Terminal control of a nonlinear process under disturbances. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 113-121. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a12/

[1] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4(370) (2006), 25–76 | DOI | Zbl

[2] Kryazhimskii A.V., Osipov Yu.S., “Idealizirovannye pakety programm i zadachi pozitsionnogo upravleniya s nepolnoi informatsiei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 139–157

[3] Grigorenko N.L., Rumyantsev A.E., “Ob odnom klasse zadach upravleniya pri nepolnoi informatsii”, Tr. MIAN, 291 (2015), 76–85 | Zbl

[4] Castillo Garcia P., Lozano P., Dzul A., Modelling and control of mini-flying machines, Springer-Verlag, London, 2005, 259 pp.

[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[6] Hauser J., Sastry S., Meyer G., “Nonlinear control design for slightly nonminimum phase systems: Application to V/STOL aircraft”, J. IFAC Automatica, 28:4 (1992), 665–679 | DOI | MR | Zbl

[7] Olfati-Saber R., “Global configuration stabilization for the VTOL aircraft with strong input coupling”, IEEE Trans. Automat. Control, 47:11 (2002), 1949–1952 | DOI | MR

[8] Kryazhimskii A. V., Strelkovskii N.V., “Zadacha garantirovannogo pozitsionnogo navedeniya lineinoi upravlyaemoi sistemy k zadannomu momentu vremeni pri nepolnoi informatsii. Programmnyi kriterii razreshimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 168–177 | MR

[9] Pontryagin L.S., Izbrannye trudy, MAKS Press, M., 2004, 552 pp.

[10] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 285 pp. | MR

[11] Batenko A.P., Sistemy terminalnogo upravleniya, Radio i svyaz, M., 1984, 160 pp. | MR

[12] Boichuk L.M., Metod strukturnogo sinteza nelineinykh sistem avtomaticheskogo upravleniya, Energiya, M., 1971, 113 pp.

[13] Boltyanskii V.G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969, 408 pp. | MR