Existence of the value and saddle point in positional differential games for neutral-type systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 101-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a conflict-controlled dynamical system described by functional differential equations of neutral type in Hale's form, we consider a differential game with a quality index that estimates the motion history realized up to the terminal time and includes an integral estimation of realizations of the players' controls. The game is formalized in the class of pure positional strategies. The main result is a proof of the existence of the value and saddle point in this game.
Keywords: neutral type systems, control theory, differential games.
@article{TIMM_2016_22_2_a11,
     author = {M. I. Gomoyunov and N. Yu. Lukoyanov and A. R. Plaksin},
     title = {Existence of the value and saddle point in positional differential games for neutral-type systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {101--112},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a11/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
AU  - N. Yu. Lukoyanov
AU  - A. R. Plaksin
TI  - Existence of the value and saddle point in positional differential games for neutral-type systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 101
EP  - 112
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a11/
LA  - ru
ID  - TIMM_2016_22_2_a11
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%A N. Yu. Lukoyanov
%A A. R. Plaksin
%T Existence of the value and saddle point in positional differential games for neutral-type systems
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 101-112
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a11/
%G ru
%F TIMM_2016_22_2_a11
M. I. Gomoyunov; N. Yu. Lukoyanov; A. R. Plaksin. Existence of the value and saddle point in positional differential games for neutral-type systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 101-112. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a11/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Osipov Yu.S., “K teorii differentsialnykh igr sistem s posledeistviem”, Prikl. matematika i mekhanika, 35:2 (1971), 300–311 | Zbl

[4] Osipov Yu.S., “Pozitsionnoe upravlenie v parabolicheskikh sistemakh”, Prikl. matematika i mekhanika, 41:2 (1977), 195–201 | MR

[5] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[6] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp. | MR

[7] Hale J.K., Cruz M.A., “Existence, uniqueness and continuous dependence for hereditary systems”, Ann. Mat. Pura Appl., 85:1 (1970), 63–81 | DOI | MR | Zbl

[8] Kryazhimskii A.V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya - ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR

[9] Kryazhimskii A.V., “Ob ustoichivom pozitsionnom upravlenii v differentsialnykh igrakh”, Prikl. matematika i mekhanika, 42:6 (1978), 963–968 | MR

[10] Maksimov V.I., “Differentsialnaya igra navedeniya dlya sistem s otklonyayuschimsya argumentom neitralnogo tipa”, Zadachi dinamicheskogo upravleniya, cb. st., UNTs AN SSSR, Sverdlovsk, 1981, 33–45 | MR

[11] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 225 pp. | MR

[12] Bellman R., Kuk K.L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR