A solution class of the Euler equation in a torus with solenoidal velocity field. III
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 91-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We continue the study of the problem on the existence conditions for solenoidal solutions of the Euler equation in a torus $D$ with respect to a pair $(\mathbf{V},p)$ of vector and scalar fields such that the lines of the vector field $\mathbf{V}$ have a simple structure, coinciding with parallels and meridians of toroidal surfaces that are concentrically embedded in $D$. Here, in contrast to the previous two papers, the right-hand side of the Euler equation, i.e., the vector field $\mathbf{f}$ in $D$, is not given in a special form but is considered to be arbitrary.
Keywords: scalar and vector fields, curl.
Mots-clés : Euler equation, divergence
@article{TIMM_2016_22_2_a10,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {A solution class of the {Euler} equation in a torus with solenoidal velocity field. {III}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {91--100},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - A solution class of the Euler equation in a torus with solenoidal velocity field. III
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 91
EP  - 100
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/
LA  - ru
ID  - TIMM_2016_22_2_a10
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T A solution class of the Euler equation in a torus with solenoidal velocity field. III
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 91-100
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/
%G ru
%F TIMM_2016_22_2_a10
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. A solution class of the Euler equation in a torus with solenoidal velocity field. III. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 91-100. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/

[1] Gromeka I.S., Gromeka I.S. Sobr. soch., dis.. d-ra fiz.-mat. nauk, Iz-vo AN SSSR, M., 1952, 296 pp. | MR

[2] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Klass vsekh gladkikh edinichnykh aksialno simmetrichnykh vektornykh polei, prodolno vikhrevykh v $R^3$”, Izv. Sarat. un-ta. Novaya ser. “Matematika. Mekhanika. Informatika”, 9:4 (2009), 11–23

[3] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Postanovka i reshenie kraevoi zadachi v klasse ploskovintovykh vektornykh polei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 123–138 | MR

[4] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “K mekhanike vintovykh potokov v idealnoi neszhimaemoi nevyazkoi sploshnoi srede”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 120–134

[5] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Nekotorye resheniya uravnenii dvizheniya dlya neszhimaemoi vyazkoi sploshnoi sredy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 48–63

[6] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Odin klass reshenii uravneniya Eilera v tore s solenoidalnym polem skorostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 60–70

[7] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Odin klass reshenii uravneniya Eilera v tore s solenoidalnym polem skorostei. II”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 102–108 | MR

[8] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 592 pp. | MR