Mots-clés : Euler equation, divergence
@article{TIMM_2016_22_2_a10,
author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
title = {A solution class of the {Euler} equation in a torus with solenoidal velocity field. {III}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {91--100},
year = {2016},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/}
}
TY - JOUR AU - V. P. Vereshchagin AU - Yu. N. Subbotin AU - N. I. Chernykh TI - A solution class of the Euler equation in a torus with solenoidal velocity field. III JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 91 EP - 100 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/ LA - ru ID - TIMM_2016_22_2_a10 ER -
%0 Journal Article %A V. P. Vereshchagin %A Yu. N. Subbotin %A N. I. Chernykh %T A solution class of the Euler equation in a torus with solenoidal velocity field. III %J Trudy Instituta matematiki i mehaniki %D 2016 %P 91-100 %V 22 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/ %G ru %F TIMM_2016_22_2_a10
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. A solution class of the Euler equation in a torus with solenoidal velocity field. III. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 91-100. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/
[1] Gromeka I.S., Gromeka I.S. Sobr. soch., dis.. d-ra fiz.-mat. nauk, Iz-vo AN SSSR, M., 1952, 296 pp. | MR
[2] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Klass vsekh gladkikh edinichnykh aksialno simmetrichnykh vektornykh polei, prodolno vikhrevykh v $R^3$”, Izv. Sarat. un-ta. Novaya ser. “Matematika. Mekhanika. Informatika”, 9:4 (2009), 11–23
[3] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Postanovka i reshenie kraevoi zadachi v klasse ploskovintovykh vektornykh polei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 123–138 | MR
[4] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “K mekhanike vintovykh potokov v idealnoi neszhimaemoi nevyazkoi sploshnoi srede”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 120–134
[5] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Nekotorye resheniya uravnenii dvizheniya dlya neszhimaemoi vyazkoi sploshnoi sredy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 48–63
[6] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Odin klass reshenii uravneniya Eilera v tore s solenoidalnym polem skorostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 60–70
[7] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Odin klass reshenii uravneniya Eilera v tore s solenoidalnym polem skorostei. II”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 102–108 | MR
[8] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 592 pp. | MR