A solution class of the Euler equation in a torus with solenoidal velocity field. III
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 91-100
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue the study of the problem on the existence conditions for solenoidal solutions of the Euler equation in a torus $D$ with respect to a pair $(\mathbf{V},p)$ of vector and scalar fields such that the lines of the vector field $\mathbf{V}$ have a simple structure, coinciding with parallels and meridians of toroidal surfaces that are concentrically embedded in $D$. Here, in contrast to the previous two papers, the right-hand side of the Euler equation, i.e., the vector field $\mathbf{f}$ in $D$, is not given in a special form but is considered to be arbitrary.
Keywords:
scalar and vector fields, curl.
Mots-clés : Euler equation, divergence
Mots-clés : Euler equation, divergence
@article{TIMM_2016_22_2_a10,
author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
title = {A solution class of the {Euler} equation in a torus with solenoidal velocity field. {III}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {91--100},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/}
}
TY - JOUR AU - V. P. Vereshchagin AU - Yu. N. Subbotin AU - N. I. Chernykh TI - A solution class of the Euler equation in a torus with solenoidal velocity field. III JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 91 EP - 100 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/ LA - ru ID - TIMM_2016_22_2_a10 ER -
%0 Journal Article %A V. P. Vereshchagin %A Yu. N. Subbotin %A N. I. Chernykh %T A solution class of the Euler equation in a torus with solenoidal velocity field. III %J Trudy Instituta matematiki i mehaniki %D 2016 %P 91-100 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/ %G ru %F TIMM_2016_22_2_a10
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. A solution class of the Euler equation in a torus with solenoidal velocity field. III. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 91-100. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a10/