Discretization of a new method for localizing discontinuity lines of a noisy two-variable function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 8-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the ill-posed problem of localizing (finding the position of) lines of discontinuity of a noisy function of two variables. New regularizing methods of localization are constructed in a discrete form. In these methods, the averaging kernel is varying, which simplifies the implementation of the algorithms. We obtain estimates for the localization error of the methods and for their separability threshold, which is another important characteristic.
Keywords: ill-posed problem, localization of singularities, line of discontinuity, regularization, discretization.
@article{TIMM_2016_22_2_a1,
     author = {A. L. Ageev and T. V. Antonova},
     title = {Discretization of a new method for localizing discontinuity lines of a noisy two-variable function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {8--17},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a1/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - Discretization of a new method for localizing discontinuity lines of a noisy two-variable function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 8
EP  - 17
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a1/
LA  - ru
ID  - TIMM_2016_22_2_a1
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T Discretization of a new method for localizing discontinuity lines of a noisy two-variable function
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 8-17
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a1/
%G ru
%F TIMM_2016_22_2_a1
A. L. Ageev; T. V. Antonova. Discretization of a new method for localizing discontinuity lines of a noisy two-variable function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 8-17. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a1/

[1] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.

[2] Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, ed. Ya.A. Furman, Fizmatlit, M., 2002, 596 pp.

[3] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 223 pp. | MR

[4] Vasin V.V., Ageev A.L., Ill-posed problems with a priori information, VSP, Utrecht, 1995, 255 pp. | MR | Zbl

[5] Ageev A.L., Antonova T.V., “O novom klasse nekorrektno postavlennykh zadach”, Izv. Ural. gos. un-ta, 2008, no. 58, Matematika. Mekhanika. Informatika. Vyp. 11, 24–42 | MR | Zbl

[6] Ageev A.L., Antonova T.V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 30–45 | MR

[7] Ageev A.L., Antonova T.V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | MR | Zbl

[8] Antonova T.V., “Metod lokalizatsii linii razryva priblizhenno zadannoi funktsii dvukh peremennykh”, Sib. zhurn. vychisl. matematiki, 15:4 (2012), 345–357 | Zbl

[9] Ageev A.L., Antonova T.V., “Approksimatsiya linii razryva zashumlennoi funktsii dvukh peremennykh”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 3–13 | MR | Zbl

[10] Ageev A.L., Antonova T.V., “O diskretizatsii metodov lokalizatsii osobennostei zashumlennoi funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 3–13 | MR