The strong reality and rationality of groups of unitriangular matrices of order $\le 8$ over fields of characteristic 2
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 71-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that an arbitrary matrix from the group of unitriangular matrices $UT_n(K)$, $n\le 8$, over an arbitrary field $K$ is conjugate in this group to a matrix whose commutativity graph is a forest. From this fact we derive the strong reality and rationality of the group $UT_n(K)$ for $n\le 8$ over an arbitrary field $K$ of characteristic 2.
Keywords: strong real group
Mots-clés : rational group, group of unitriangular matrices.
@article{TIMM_2016_22_1_a7,
     author = {O. A. Dubina and S. G. Kolesnikov and N. S. Managarova},
     title = {The strong reality and rationality of groups of unitriangular matrices of order $\le 8$ over fields of characteristic 2},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--83},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a7/}
}
TY  - JOUR
AU  - O. A. Dubina
AU  - S. G. Kolesnikov
AU  - N. S. Managarova
TI  - The strong reality and rationality of groups of unitriangular matrices of order $\le 8$ over fields of characteristic 2
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 71
EP  - 83
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a7/
LA  - ru
ID  - TIMM_2016_22_1_a7
ER  - 
%0 Journal Article
%A O. A. Dubina
%A S. G. Kolesnikov
%A N. S. Managarova
%T The strong reality and rationality of groups of unitriangular matrices of order $\le 8$ over fields of characteristic 2
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 71-83
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a7/
%G ru
%F TIMM_2016_22_1_a7
O. A. Dubina; S. G. Kolesnikov; N. S. Managarova. The strong reality and rationality of groups of unitriangular matrices of order $\le 8$ over fields of characteristic 2. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 71-83. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a7/

[1] Kirillov A., “Variation on the triangular theme”, Lie groups and Lie algebras, E.B. Dynkin's Seminar, Amer. Math. Soc. Transl. Ser. 2, 169, Amer. Math. Soc., Providence, 1995, 43–73 | MR | Zbl

[2] Arregi J.M., Vera-Lopez A., “Conjugacy classes in Sylow $p$-subgroups of ${\rm GL}(n,q)$”, J. Algebra, 152:1 (1992), 1–19 | DOI | MR | Zbl

[3] Arregi J.M., Vera-Lopez A., “Some algorithms for the calculation conjugacy classes in the Sylow $p$-subgroups of ${\rm GL}(n,q)$”, J. Algebra, 177:3 (1995), 899–925 | DOI | MR | Zbl

[4] Isaacs I.M., Karagueuzian D., “Conjugacy in groups of upper triagular matrices”, J. Algebra, 202:2 (1998), 704–711 | DOI | MR | Zbl

[5] Isaacs I.M., Karagueuzian D., “Erratum: “Conjugacy in groups of upper triangular matrices””, J. Algebra, 208:2 (1998), 722 | DOI | MR | Zbl

[6] Kletzing D., Structure and representations of ${\rm Q}$-groups, Lecture Notes in Math., 1084, Springer-Verlag, Berlin, 1984, 290 pp. | MR

[7] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2014, 253 pp. URL: http://math.nsc.ru/alglog/alglogf.html

[8] Gazdanova M.A., “O strogoi veschestvennosti gruppy unitreugolnykh matrits razmernosti $6\times 6$ nad polem kharakteristiki 2”, Algebra and Model Theory: coll. of papers, 5, NSTU Publ., Novosibirsk, 2005, 44–53 | MR

[9] Gazdanova M.A., Nuzhin Ya.N., “O strogoi veschestvennosti unipotentnykh podgrupp grupp lieva tipa nad polem kharakteristiki 2”, Sib. mat. zhurn., 47:5 (2006), 1031–1051 | MR | Zbl

[10] Gazdanova M.A., “O strogoi veschestvennosti gruppy unitreugolnykh matrits razmernosti $7\times 7$ nad polem kharakteristiki 2”, Vestn. KrasGU. Ser. fiz.-mat. nauk, 2006, no. 7, 43–53

[11] Burbaki N., Gruppy i algebry Li, Mir, M., 1972, 331 pp. | MR