A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 52-60
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an optimal control problem for solutions of a boundary value problem on an interval for a second-order ordinary differential equation with a small parameter at the second derivative. The control is scalar and satisfies geometric constraints. Expansions of a solution to this problem up to any power of the small parameter are constructed and validated.
Keywords:
optimal control, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2016_22_1_a5,
author = {A. R. Danilin},
title = {A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {52--60},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/}
}
TY - JOUR AU - A. R. Danilin TI - A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 52 EP - 60 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/ LA - ru ID - TIMM_2016_22_1_a5 ER -
%0 Journal Article %A A. R. Danilin %T A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints %J Trudy Instituta matematiki i mehaniki %D 2016 %P 52-60 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/ %G ru %F TIMM_2016_22_1_a5
A. R. Danilin. A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 52-60. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/