A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 52-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an optimal control problem for solutions of a boundary value problem on an interval for a second-order ordinary differential equation with a small parameter at the second derivative. The control is scalar and satisfies geometric constraints. Expansions of a solution to this problem up to any power of the small parameter are constructed and validated.
Keywords: optimal control, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2016_22_1_a5,
     author = {A. R. Danilin},
     title = {A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {52--60},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 52
EP  - 60
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/
LA  - ru
ID  - TIMM_2016_22_1_a5
ER  - 
%0 Journal Article
%A A. R. Danilin
%T A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 52-60
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/
%G ru
%F TIMM_2016_22_1_a5
A. R. Danilin. A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 52-60. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[3] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972, 441 pp. | MR

[4] Danilin A.R., Korobitsyna N.S., “Asimptoticheskie otsenki resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya na otrezke s geometricheskimi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 104–112 | MR

[5] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[6] Danilin A.R., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya na otrezke s integralnym ogranicheniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 76–85 | MR

[7] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 255 pp. | MR

[8] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR