A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 52-60

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem for solutions of a boundary value problem on an interval for a second-order ordinary differential equation with a small parameter at the second derivative. The control is scalar and satisfies geometric constraints. Expansions of a solution to this problem up to any power of the small parameter are constructed and validated.
Keywords: optimal control, asymptotic expansion, singular perturbation problems, small parameter.
@article{TIMM_2016_22_1_a5,
     author = {A. R. Danilin},
     title = {A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {52--60},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 52
EP  - 60
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/
LA  - ru
ID  - TIMM_2016_22_1_a5
ER  - 
%0 Journal Article
%A A. R. Danilin
%T A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 52-60
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/
%G ru
%F TIMM_2016_22_1_a5
A. R. Danilin. A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 52-60. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a5/