On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 44-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group $G$, and let $N(G)$ be the set of sizes of its conjugacy classes. It is shown that if $N(G)$ equals $N(\mathrm{Alt}_n)$ or $N(\mathrm{Sym}_n)$, where $n>1361$, then $G$ has a composition factor isomorphic to an alternating group $\mathrm{Alt}_m$ with $m\leq n$ and the half-interval $(m, n]$ contains no primes.
Keywords: finite group, alternating group, symmetric group, Thompson's conjecture.
Mots-clés : simple group, conjugacy class
@article{TIMM_2016_22_1_a4,
     author = {I. B. Gorshkov},
     title = {On {Thompson's} conjecture for alternating and symmetric groups of degree greater than 1361},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--51},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 44
EP  - 51
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/
LA  - ru
ID  - TIMM_2016_22_1_a4
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 44-51
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/
%G ru
%F TIMM_2016_22_1_a4
I. B. Gorshkov. On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 44-51. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/