On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 44-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group $G$, and let $N(G)$ be the set of sizes of its conjugacy classes. It is shown that if $N(G)$ equals $N(\mathrm{Alt}_n)$ or $N(\mathrm{Sym}_n)$, where $n>1361$, then $G$ has a composition factor isomorphic to an alternating group $\mathrm{Alt}_m$ with $m\leq n$ and the half-interval $(m, n]$ contains no primes.
Keywords:
finite group, alternating group, symmetric group, Thompson's conjecture.
Mots-clés : simple group, conjugacy class
Mots-clés : simple group, conjugacy class
@article{TIMM_2016_22_1_a4,
author = {I. B. Gorshkov},
title = {On {Thompson's} conjecture for alternating and symmetric groups of degree greater than 1361},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {44--51},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/}
}
TY - JOUR AU - I. B. Gorshkov TI - On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361 JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 44 EP - 51 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/ LA - ru ID - TIMM_2016_22_1_a4 ER -
I. B. Gorshkov. On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 44-51. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/