On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 44-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a finite group $G$, and let $N(G)$ be the set of sizes of its conjugacy classes. It is shown that if $N(G)$ equals $N(\mathrm{Alt}_n)$ or $N(\mathrm{Sym}_n)$, where $n>1361$, then $G$ has a composition factor isomorphic to an alternating group $\mathrm{Alt}_m$ with $m\leq n$ and the half-interval $(m, n]$ contains no primes.
Keywords: finite group, alternating group, symmetric group, Thompson's conjecture.
Mots-clés : simple group, conjugacy class
@article{TIMM_2016_22_1_a4,
     author = {I. B. Gorshkov},
     title = {On {Thompson's} conjecture for alternating and symmetric groups of degree greater than 1361},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--51},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 44
EP  - 51
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/
LA  - ru
ID  - TIMM_2016_22_1_a4
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 44-51
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/
%G ru
%F TIMM_2016_22_1_a4
I. B. Gorshkov. On Thompson's conjecture for alternating and symmetric groups of degree greater than 1361. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 44-51. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a4/

[1] Bukhshtab A.A., Teoriya chisel, Prosveschenie, M., 1966, 385 pp.

[2] Vakula I.A., “O stroenii konechnykh grupp, izospektralnykh znakoperemennoi gruppe”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 45–60

[3] Vasilev A.V., Vdovin E.P., “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[4] Gorshkov I.B., “O gipoteze Tompsona dlya prostykh grupp so svyaznym grafom prostykh chisel”, Algebra i logika, 51:2 (2012), 168–192 | MR | Zbl

[5] Revin D.O., “Svoistvo $D_{\pi}$ v konechnykh prostykh gruppakh”, Algebra i logika, 47:3 (2008), 364–394 | MR | Zbl

[6] Ahanjideh N., Ahanjideh M., “On the validity of Thompson's conjecture for finite simple groups”, Comm. Algebra, 41:11 (2013), 4116–4145 | DOI | MR | Zbl

[7] Alavi S.H., Daneshkhah A., “A new characterization of alternating and symmetric groups”, J. Appl. Math. Comp., 17:1 (2005), 245–258 | DOI | MR | Zbl

[8] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[9] Baker R.C., “The difference between consecutive primes. II”, Proc. London Math. Soc., 83:3 (2001), 532–562 | DOI | MR | Zbl

[10] Chen G., “On Thompson's conjecture”, J. Algebra, 185:1 (1996), 184–193 | DOI | MR | Zbl

[11] GAP Group, GAP-Groups, Algorithms, and Programming. Ver. 4.4, 2004 URL: http://www.gap-system.org

[12] Gorenstein D., Finite groups, Harper and Row, N. Y., 1968, 528 pp. | MR | Zbl

[13] Gorshkov I.B., Toward Thompson's conjecture for alternating and symmetric groups, 2015, 6 pp., arXiv: http://arxiv.org/pdf/1502.02978.pdf

[14] Liu S., Yang Y., “On Thompson's Conjecture for alternating groups $A_{p+3}$”, Sci. World J., 2014, Article ID 752598, 1-10

[15] Pierre D., Estimates of some functions over primes without R.H., 2010, 20 pp., arXiv: http://arxiv.org/abs/1002.0442

[16] The Kourovka notebook: unsolved problems in group theory, 18thed., eds. eds. V.D. Mazurov, E.I. Khukhro, Novosibirsk, 2014, 253 pp., arXiv: http://arxiv.org/pdf/1401.0300v6.pdf | MR

[17] Vasil'ev A.V., “On Thompson's conjecture”, Sib. elektron. mat. izv., 6 (2009), 457–464 | MR | Zbl

[18] Wielandt H., “Zum Satz von Sylow”, Math. Z., 60:1 (1954), 407–408 | DOI | MR | Zbl