On the dual method for a model problem with a crack
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 36-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The dual method based on a modified Lagrangian functional is applied to a model problem with a crack. The convergence of the method is investigated under the assumption that the solution of the primal problem is $H^1$-regular. The duality relation is established for the primal and dual problems.
Keywords: model problem with a crack, dual method, modified Lagrangian functional, sensitivity functional.
@article{TIMM_2016_22_1_a3,
     author = {E. M. Vikhtenko and R. V. Namm},
     title = {On the dual method for a model problem with a crack},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {36--43},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a3/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - R. V. Namm
TI  - On the dual method for a model problem with a crack
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 36
EP  - 43
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a3/
LA  - ru
ID  - TIMM_2016_22_1_a3
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A R. V. Namm
%T On the dual method for a model problem with a crack
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 36-43
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a3/
%G ru
%F TIMM_2016_22_1_a3
E. M. Vikhtenko; R. V. Namm. On the dual method for a model problem with a crack. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 36-43. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a3/

[1] Morozov N.F., Matematicheskie voprosy teorii treschin, Nauka, M., 1984, 255 pp. | MR

[2] Khludnev A.M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010, 252 pp.

[3] Kravchuk A.S., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M., 1997, 333 pp.

[4] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986, 270 pp. | MR

[5] Wang G., Wang L., “Numerical modeling of a dual variational inequality of unilateral contact problems using the mixed finite element method”, Int. J. Numer. Anal. Model., 6:1 (2009), 161–176 | MR | Zbl

[6] Matei A., “An existence result for a mixed variational problem arising from Contact Mechanics”, Nonlinear Anal. Real World Appl., 2014, no. 20, 74–81 | DOI | MR | Zbl

[7] Golshtein E.G., Tretyakov N.V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989, 400 pp. | MR

[8] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987, 399 pp. | MR

[9] Vu G., Namm R.V., Sachkov S.A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zhurn. vychisl. matematiki i mat. fiziki, 46:1 (2006), 26–36 | MR | Zbl

[10] Vikhtenko E.M., Namm R.V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zhurn. vychisl. matematiki i mat. fiziki, 47:12 (2007), 2023–2036 | MR

[11] Mikhlin S.G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977, 432 pp. | MR

[12] Kikuchi N., Oden J.T., Contact problems in elasticity: A study of variational inequalities and finite element method, SIAM Stud. Appl. Math., 8, Philadelphia, 1988, 509 pp. | MR

[13] Mclean W., Strongly elliptic systems and boundary integral equations, University Press, Cambridge, 2000, 372 pp. | MR | Zbl

[14] Vikhtenko E.M., Maksimova N.N., Namm R.V., “Funktsionaly chuvstvitelnosti v variatsionnykh neravenstvakh mekhaniki i ikh prilozhenie k skhemam dvoistvennosti”, Sib. zhurn. vychisl. matematiki, 17:1 (2014), 43–52 | MR | Zbl

[15] Vikhtenko E.M., Vu G., Namm R.V., “Funktsionaly chuvstvitelnosti v kontaktnykh zadachakh teorii uprugosti”, Zhurn. vychisl. matematiki i mat. fiziki, 54:7 (2014), 1218–1228 | DOI | MR | Zbl

[16] Vikhtenko E.M., Vu G., Namm R.V., “Metody resheniya polukoertsitivnykh variatsionnykh neravenstv mekhaniki na osnove modifitsirovannykh funktsionalov Lagranzha”, Dalnevostoch. mat. zhurn., 14:1 (2014), 6–17 | MR

[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[18] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR

[19] Polyak B.T., Vvedenie v optimizatsiyu, Nauka, M., 1980, 384 pp. | MR