Mots-clés : $p$-supersolvable group
@article{TIMM_2016_22_1_a29,
author = {L. Zhang and Guo Wen Bin and L. Huo},
title = {On $S\Phi$-embedded subgroups of finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {310--318},
year = {2016},
volume = {22},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/}
}
L. Zhang; Guo Wen Bin; L. Huo. On $S\Phi$-embedded subgroups of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 310-318. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/
[1] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of finite groups, Walter de Gruyter, Berlin; New York, 2010, 334 pp. | MR | Zbl
[2] Ballester-Bolinches A., Ezquerro L.M., Skiba A.N., “On second maximal subgroups of Sylow subgroups of finite groups”, J. Pure Appl. Algebra, 215:4 (2011), 705–714 | DOI | MR | Zbl
[3] Ballester-Bolinches A., Pedraza-Aguilera M.C., “On minimal subgroups of finite groups”, Acta Math. Hungar., 73:4 (1996), 335–342 | DOI | MR | Zbl
[4] Chen X., Guo W., “On weakly $S$-embedded and weakly $\tau$-embedded subgroups”, Sib. Math. J., 54:5 (2013), 931–945 | DOI | MR | Zbl
[5] Cossey J., Stonehewer S., “Abelian quasinormal subgroups of finite $p$-groups”, J. Algebra, 326:1 (2011), 113–121 | DOI | MR | Zbl
[6] Cossey J., Stonehewer S., “On the rarity of quasinormal subgroups”, Rend. Semin. Mat. Univ. Padova, 125 (2011), 81–105 | DOI | MR | Zbl
[7] Deskins W.E., “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl
[8] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin, 1992, 891 pp. | MR
[9] Guo W., The theory of classes of groups, Science Press-Kluwer Acad. Publ., Beijing; New York; Dordrecht; Boston; London, 2000, 258 pp. | MR | Zbl
[10] Guo W., Skiba A. N., “Finite groups with given $s$-embedded and $n$-embedded subgroups”, J. Algebra, 321:10 (2009), 2843–2860 | DOI | MR | Zbl
[11] Huang J., “On $\mathcal{F}_{s}$-quasinormal subgroups of finite groups”, Comm. Algebra, 38:11 (2010), 4063–4076 | DOI | MR | Zbl
[12] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin; New York, 1967, 793 pp. | MR | Zbl
[13] Huppert B., Blackburn N., Finite groups III, Springer-Verlag, Berlin; New York, 1982, 454 pp. | MR | Zbl
[14] Li D., Guo X., “The influence of $c$-normality of subgroups on the structure of finite groups II”, Comm. Algebra, 26:6 (1998), 1913–1922 | DOI | MR | Zbl
[15] Lukyanenko V.O., Skiba A.N., “On $\tau$-quasinormal and weakly $\tau$-quasinormal subgroups of finite groups”, Math. Sci. Res. J., 12:7 (2008), 243–257 | MR | Zbl
[16] Malinowska I.A., “Finite groups with $sn$-embedded or $s$-embedded subgroups”, Acta Math. Hungar., 136:1–2 (2012), 76–89 | DOI | MR | Zbl
[17] Ramadan M., “Influence of normality on maximal subgroups of Sylow subgroups of a finite group”, Acta Math. Hungar., 59:1–2 (1992), 107–110 | DOI | MR | Zbl
[18] Robinson D.J.S., A course in the theory of groups, Springer-Verlag, Berlin; New York, 1982, 499 pp. | MR | Zbl
[19] Schmid P., “Subgroup permutable with all Sylow subgroups”, J. Algebra, 207:1 (1998), 285–293 | DOI | MR | Zbl
[20] Wang Y., “$c$-Normality of groups and its properties”, J. Algebra, 180:3 (1996), 954–965 | DOI | MR | Zbl