On $S\Phi$-embedded subgroups of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 310-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subgroup $H$ of $G$ is called $S\Phi$-embedded in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is $S$-quasinormal in $G$ and $(H \cap T)H_{G}/H_{G}\leq\Phi(H/H_{G})$, where $H_{G}$ is the maximal normal subgroup of $G$ contained in $H$ and $\Phi(H/H_{G})$ is the Frattini subgroup of $H/H_{G}$. In this paper, we investigate the influence of $S\Phi$-embedded subgroups on the structure of finite groups. In particular, some new characterizations of $p$-supersolvability of finite groups are obtained by assuming some subgroups are $S\Phi$-embedded.
Keywords: sylow $p$-subgroup, $S\Phi$-embedded subgroup, $p$-nilpotent group.
Mots-clés : $p$-supersolvable group
@article{TIMM_2016_22_1_a29,
     author = {L. Zhang and Guo Wen Bin and L. Huo},
     title = {On $S\Phi$-embedded subgroups of finite groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {310--318},
     year = {2016},
     volume = {22},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/}
}
TY  - JOUR
AU  - L. Zhang
AU  - Guo Wen Bin
AU  - L. Huo
TI  - On $S\Phi$-embedded subgroups of finite groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 310
EP  - 318
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/
LA  - en
ID  - TIMM_2016_22_1_a29
ER  - 
%0 Journal Article
%A L. Zhang
%A Guo Wen Bin
%A L. Huo
%T On $S\Phi$-embedded subgroups of finite groups
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 310-318
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/
%G en
%F TIMM_2016_22_1_a29
L. Zhang; Guo Wen Bin; L. Huo. On $S\Phi$-embedded subgroups of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 310-318. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/

[1] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of finite groups, Walter de Gruyter, Berlin; New York, 2010, 334 pp. | MR | Zbl

[2] Ballester-Bolinches A., Ezquerro L.M., Skiba A.N., “On second maximal subgroups of Sylow subgroups of finite groups”, J. Pure Appl. Algebra, 215:4 (2011), 705–714 | DOI | MR | Zbl

[3] Ballester-Bolinches A., Pedraza-Aguilera M.C., “On minimal subgroups of finite groups”, Acta Math. Hungar., 73:4 (1996), 335–342 | DOI | MR | Zbl

[4] Chen X., Guo W., “On weakly $S$-embedded and weakly $\tau$-embedded subgroups”, Sib. Math. J., 54:5 (2013), 931–945 | DOI | MR | Zbl

[5] Cossey J., Stonehewer S., “Abelian quasinormal subgroups of finite $p$-groups”, J. Algebra, 326:1 (2011), 113–121 | DOI | MR | Zbl

[6] Cossey J., Stonehewer S., “On the rarity of quasinormal subgroups”, Rend. Semin. Mat. Univ. Padova, 125 (2011), 81–105 | DOI | MR | Zbl

[7] Deskins W.E., “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl

[8] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin, 1992, 891 pp. | MR

[9] Guo W., The theory of classes of groups, Science Press-Kluwer Acad. Publ., Beijing; New York; Dordrecht; Boston; London, 2000, 258 pp. | MR | Zbl

[10] Guo W., Skiba A. N., “Finite groups with given $s$-embedded and $n$-embedded subgroups”, J. Algebra, 321:10 (2009), 2843–2860 | DOI | MR | Zbl

[11] Huang J., “On $\mathcal{F}_{s}$-quasinormal subgroups of finite groups”, Comm. Algebra, 38:11 (2010), 4063–4076 | DOI | MR | Zbl

[12] Huppert B., Endliche Gruppen I, Springer-Verlag, Berlin; New York, 1967, 793 pp. | MR | Zbl

[13] Huppert B., Blackburn N., Finite groups III, Springer-Verlag, Berlin; New York, 1982, 454 pp. | MR | Zbl

[14] Li D., Guo X., “The influence of $c$-normality of subgroups on the structure of finite groups II”, Comm. Algebra, 26:6 (1998), 1913–1922 | DOI | MR | Zbl

[15] Lukyanenko V.O., Skiba A.N., “On $\tau$-quasinormal and weakly $\tau$-quasinormal subgroups of finite groups”, Math. Sci. Res. J., 12:7 (2008), 243–257 | MR | Zbl

[16] Malinowska I.A., “Finite groups with $sn$-embedded or $s$-embedded subgroups”, Acta Math. Hungar., 136:1–2 (2012), 76–89 | DOI | MR | Zbl

[17] Ramadan M., “Influence of normality on maximal subgroups of Sylow subgroups of a finite group”, Acta Math. Hungar., 59:1–2 (1992), 107–110 | DOI | MR | Zbl

[18] Robinson D.J.S., A course in the theory of groups, Springer-Verlag, Berlin; New York, 1982, 499 pp. | MR | Zbl

[19] Schmid P., “Subgroup permutable with all Sylow subgroups”, J. Algebra, 207:1 (1998), 285–293 | DOI | MR | Zbl

[20] Wang Y., “$c$-Normality of groups and its properties”, J. Algebra, 180:3 (1996), 954–965 | DOI | MR | Zbl