On $S\Phi$-embedded subgroups of finite groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 310-318
Voir la notice de l'article provenant de la source Math-Net.Ru
A subgroup $H$ of $G$ is called $S\Phi$-embedded in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is $S$-quasinormal in $G$ and $(H \cap T)H_{G}/H_{G}\leq\Phi(H/H_{G})$, where $H_{G}$ is the maximal normal subgroup of $G$ contained in $H$ and $\Phi(H/H_{G})$ is the Frattini subgroup of $H/H_{G}$. In this paper, we investigate the influence of $S\Phi$-embedded subgroups on the structure of finite groups. In particular, some new characterizations of $p$-supersolvability of finite groups are obtained by assuming some subgroups are $S\Phi$-embedded.
Keywords:
sylow $p$-subgroup, $S\Phi$-embedded subgroup, $p$-nilpotent group.
Mots-clés : $p$-supersolvable group
Mots-clés : $p$-supersolvable group
@article{TIMM_2016_22_1_a29,
author = {L. Zhang and Guo Wen Bin and L. Huo},
title = {On $S\Phi$-embedded subgroups of finite groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {310--318},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/}
}
L. Zhang; Guo Wen Bin; L. Huo. On $S\Phi$-embedded subgroups of finite groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 310-318. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a29/