Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 294-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A reachability problem with constraints of asymptotic nature is considered in a topological space. The properties of a rather general procedure that defines an extension of the problem are studied. In particular, we specify a rule that transforms an arbitrary extension scheme (a compactifier) to a similar scheme with the property that the continuous extension of the objective operator of the reachability problem is homeomorphic. We show how to use this rule in the case when the extension is realized in the ultrafilter space of a broadly understood measurable space. This version is then made more specific for the case of an objective operator defined on a nondegenerate interval of the real line.
Keywords: attraction set, topological space, ultrafilter, factor space.
@article{TIMM_2016_22_1_a28,
     author = {A. G. Chentsov},
     title = {Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {294--309},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a28/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 294
EP  - 309
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a28/
LA  - ru
ID  - TIMM_2016_22_1_a28
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 294-309
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a28/
%G ru
%F TIMM_2016_22_1_a28
A. G. Chentsov. Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 294-309. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a28/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1977, 254 pp. | MR

[3] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[4] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[5] Krasovskii N.N., Subbotin A.I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022 | MR

[6] Kryazhimskii A.V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya-ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR

[7] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[8] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[9] Chentsov A.G., “Mnozhestva prityazheniya v abstraktnykh zadachakh o dostizhimosti: ekvivalentnye predstavleniya i osnovnye svoistva”, Izv. vuzov. Matematika, 2013, no. 11, 33–50 | MR

[10] Chentsov A.G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki.), 2014, no. 1, 87–101 | Zbl

[11] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[12] Chentsov A.G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki.), 2011, no. 1, 113–142 | Zbl

[13] Chentsov A.G., Morina S.I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht; Boston; London, 2002, 408 pp. | MR | Zbl

[14] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1968, 384 pp.

[15] Aleksandrov P.S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial URSS, M., 2004, 368 pp.

[16] Chentsov A.G., “Yarusnye otobrazheniya i preobrazovaniya na osnove ultrafiltrov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 298–314

[17] Chentsov A.G., “Abstraktnaya zadacha o dostizhimosti: “chisto asimptoticheskaya” versiya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 289–305 | MR

[18] Chentsov A.G., “K voprosu o soblyudenii ogranichenii v klasse obobschennykh elementov”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki.), 2014, no. 3, 90–109 | MR | Zbl

[19] Chentsov A.G., “K voprosu o strukture mnozhestv prityazheniya v topologicheskom prostranstve”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 2012, no. 1(39), 147–150 | MR

[20] Chentsov A.G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 293–311

[21] Chentsov A.G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht;Boston;London, 1997, 322 pp. | MR | Zbl

[22] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya., Izd-vo inostr. lit., 1962, 895 pp.

[23] Chentsov A.G., Baklanov A.P., “K voprosu o postroenii mnozhestva dostizhimosti pri ogranicheniyakh asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 309–323 | MR

[24] Chentsov A.G., Baklanov A.P., “Ob odnoi zadache, svyazannoi s asimptoticheskoi dostizhimostyu v srednem”, Dokl. RAN, 459:6 (2014), 672–676 | DOI | MR | Zbl