@article{TIMM_2016_22_1_a28,
author = {A. G. Chentsov},
title = {Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {294--309},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a28/}
}
TY - JOUR AU - A. G. Chentsov TI - Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 294 EP - 309 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a28/ LA - ru ID - TIMM_2016_22_1_a28 ER -
A. G. Chentsov. Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 294-309. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a28/
[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[2] Gamkrelidze R.V., Osnovy optimalnogo upravleniya, Izd-vo Tbilis. un-ta, Tbilisi, 1977, 254 pp. | MR
[3] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR
[4] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[5] Krasovskii N.N., Subbotin A.I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022 | MR
[6] Kryazhimskii A.V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya-ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR
[7] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.
[8] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR
[9] Chentsov A.G., “Mnozhestva prityazheniya v abstraktnykh zadachakh o dostizhimosti: ekvivalentnye predstavleniya i osnovnye svoistva”, Izv. vuzov. Matematika, 2013, no. 11, 33–50 | MR
[10] Chentsov A.G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki.), 2014, no. 1, 87–101 | Zbl
[11] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR
[12] Chentsov A.G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki.), 2011, no. 1, 113–142 | Zbl
[13] Chentsov A.G., Morina S.I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht; Boston; London, 2002, 408 pp. | MR | Zbl
[14] Kelli Dzh.L., Obschaya topologiya, Nauka, M., 1968, 384 pp.
[15] Aleksandrov P.S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial URSS, M., 2004, 368 pp.
[16] Chentsov A.G., “Yarusnye otobrazheniya i preobrazovaniya na osnove ultrafiltrov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 298–314
[17] Chentsov A.G., “Abstraktnaya zadacha o dostizhimosti: “chisto asimptoticheskaya” versiya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 289–305 | MR
[18] Chentsov A.G., “K voprosu o soblyudenii ogranichenii v klasse obobschennykh elementov”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki.), 2014, no. 3, 90–109 | MR | Zbl
[19] Chentsov A.G., “K voprosu o strukture mnozhestv prityazheniya v topologicheskom prostranstve”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 2012, no. 1(39), 147–150 | MR
[20] Chentsov A.G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 293–311
[21] Chentsov A.G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht;Boston;London, 1997, 322 pp. | MR | Zbl
[22] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya., Izd-vo inostr. lit., 1962, 895 pp.
[23] Chentsov A.G., Baklanov A.P., “K voprosu o postroenii mnozhestva dostizhimosti pri ogranicheniyakh asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 309–323 | MR
[24] Chentsov A.G., Baklanov A.P., “Ob odnoi zadache, svyazannoi s asimptoticheskoi dostizhimostyu v srednem”, Dokl. RAN, 459:6 (2014), 672–676 | DOI | MR | Zbl