Mots-clés : wavefront, eikonal
@article{TIMM_2016_22_1_a27,
author = {A. A. Uspenskii and P. D. Lebedev},
title = {The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {282--293},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/}
}
TY - JOUR AU - A. A. Uspenskii AU - P. D. Lebedev TI - The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 282 EP - 293 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/ LA - ru ID - TIMM_2016_22_1_a27 ER -
%0 Journal Article %A A. A. Uspenskii %A P. D. Lebedev %T The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set %J Trudy Instituta matematiki i mehaniki %D 2016 %P 282-293 %V 22 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/ %G ru %F TIMM_2016_22_1_a27
A. A. Uspenskii; P. D. Lebedev. The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 282-293. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/
[1] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona - Yakobi tipa eikonala, I”, Mat. sb., 98:3 (1975), 450–493 | MR | Zbl
[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[3] Subbotin A.I., Generalized solutions of first-order partial differential equations: The dynamical optimization, Birkhauser, Boston, 1995, 312 pp. | MR
[4] Crandall M.G., Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[5] Kolokoltsov V.N., Maslov V.P., “Zadacha Koshi dlya odnorodnogo uravneniya Bellmana”, Dokl. AN SSSR, 296(4) (1987), 796–800 | MR
[6] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 182–191 | MR | Zbl
[7] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR
[8] Uspenskii A.A., Lebedev P.D., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 82–100 | MR
[9] Uspenskii A.A., Lebedev P.D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 171–186 | MR
[10] Uspenskii A.A., “Formuly ischisleniya negladkikh osobennostei funktsii optimalnogo rezultata v zadache bystrodeistviya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 276–290 | MR
[11] Uspenskii A.A., “Neobkhodimye usloviya suschestvovaniya psevdovershin kraevogo mnozhestva v zadache Dirikhle dlya uravneniya eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 250–263 | MR
[12] Byushgens S.S., Differentsialnaya geometriya, GITTL, M., 1940, 300 pp.
[13] Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977, 208 pp.
[14] Ohm M., Lehrbuch der gesamten hohern Mathematik, 2, Verlag Friedrich Volckmar, Leipzig, 1835