The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 282-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of singularities appearing in generalized solutions of the boundary value Dirichlet problem for eikonal-type first-order partial differential equations is considered. The object of study is the pseudovertices of the boundary set. Finding the pseudovertices is an element of the procedure for constructing branches of the singular set. Necessary conditions of pseudovertex existence are obtained under weakened assumptions on the smoothness of the boundary of a nonconvex boundary set. The situation of the first-order smoothness of the boundary and breaks of the second-order derivatives is studied. The necessary conditions are written in terms of the stationarity of coordinate functions and with the use of one-sided curvatures.
Keywords: first-order PDE, minimax solution, diffeomorphism, curvature, optimal result function, singular set, symmetry.
Mots-clés : wavefront, eikonal
@article{TIMM_2016_22_1_a27,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {282--293},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 282
EP  - 293
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/
LA  - ru
ID  - TIMM_2016_22_1_a27
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 282-293
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/
%G ru
%F TIMM_2016_22_1_a27
A. A. Uspenskii; P. D. Lebedev. The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 282-293. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a27/

[1] Kruzhkov S.N., “Obobschennye resheniya uravnenii Gamiltona - Yakobi tipa eikonala, I”, Mat. sb., 98:3 (1975), 450–493 | MR | Zbl

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Subbotin A.I., Generalized solutions of first-order partial differential equations: The dynamical optimization, Birkhauser, Boston, 1995, 312 pp. | MR

[4] Crandall M.G., Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[5] Kolokoltsov V.N., Maslov V.P., “Zadacha Koshi dlya odnorodnogo uravneniya Bellmana”, Dokl. AN SSSR, 296(4) (1987), 796–800 | MR

[6] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 182–191 | MR | Zbl

[7] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR

[8] Uspenskii A.A., Lebedev P.D., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 82–100 | MR

[9] Uspenskii A.A., Lebedev P.D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 171–186 | MR

[10] Uspenskii A.A., “Formuly ischisleniya negladkikh osobennostei funktsii optimalnogo rezultata v zadache bystrodeistviya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 276–290 | MR

[11] Uspenskii A.A., “Neobkhodimye usloviya suschestvovaniya psevdovershin kraevogo mnozhestva v zadache Dirikhle dlya uravneniya eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 250–263 | MR

[12] Byushgens S.S., Differentsialnaya geometriya, GITTL, M., 1940, 300 pp.

[13] Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977, 208 pp.

[14] Ohm M., Lehrbuch der gesamten hohern Mathematik, 2, Verlag Friedrich Volckmar, Leipzig, 1835