Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 271-281
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the generalized method of boundary functions, we construct a uniform asymptotic expansion of the solution of the Dirichlet problem for a singularly perturbed linear inhomogeneous ordinary second-order differential equation with three turning points on the real axis. The constructed asymptotic series is a Puiseux series.
Keywords: asymptotic expansion, turning point, ordinary second-order differential equation, Airy equation, modified Bessel functions, Dirichlet problem, generalized boundary function, small parameter.
Mots-clés : singular (bisingular) perturbation
@article{TIMM_2016_22_1_a26,
     author = {D. A. Tursunov},
     title = {Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {271--281},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/}
}
TY  - JOUR
AU  - D. A. Tursunov
TI  - Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 271
EP  - 281
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/
LA  - ru
ID  - TIMM_2016_22_1_a26
ER  - 
%0 Journal Article
%A D. A. Tursunov
%T Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 271-281
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/
%G ru
%F TIMM_2016_22_1_a26
D. A. Tursunov. Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 271-281. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/

[1] Vazov V., Asimptoticheskie razlozheniya reshenii differentsialnykh uravnenii, Mir, M., 1968, 465 pp.

[2] Olver F.M., “Connection formulas for second-order differential equations with multiple turning points”, SIAM. J. Math. Anal., 8:1 (1977), 127–154 | DOI | MR | Zbl

[3] Olver F.M., “Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities”, SIAM. J. Math. Anal., 8:4 (1977), 673–700 | DOI | MR | Zbl

[4] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka; Fizmatlit, M., 1989, 336 pp. | MR

[5] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[6] Alymkulov K., “Method of boundary layer function to solve the boundary value problem for a singularly perturbed differential equation of the order two with a turning point”, Universal J. Appl. Math., 2:3 (2014), 119–124

[7] Alymkulov K., Khalmatov A.A., “Metod pogranfunktsii dlya resheniya modelnogo uravneniya Laitkhilla s regulyarnoi osoboi tochkoi”, Mat. zametki, 92:6 (2012), 819–824 | DOI | MR | Zbl

[8] Alymkulov K., Asylbekov T.D., Dolbeeva S.F., “Obobschenie metoda pogranfunktsii dlya resheniya kraevoi zadachi dlya bisingulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka”, Mat. zametki, 94:4 (2013), 484–487 | DOI | MR

[9] Alymkulov K., Zulpukarov A.Z., “Ravnomernaya asimptotika resheniya kraevoi zadachi singulyarno vozmuschennogo uravneniya vtorogo poryadka so slaboi osobennostyu”, Dokl. AN, 398:5 (2004), 583–586 | MR

[10] Tursunov D.A., “Ravnomernoe priblizhenie resheniya kraevoi zadachi bisingulyarno vozmuschennogo uravneniya vtorogo poryadka”, Vestn. OshGU, 2008, no. 5, 240–243

[11] Tursunov D.A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s dvumya tochkami povorota”, Vestn. Tom. gos. un-ta. Matematika i mekhanika, 1(21) (2013), 34–40

[12] Fedoryuk M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR