Voir la notice du chapitre de livre
Mots-clés : singular (bisingular) perturbation
@article{TIMM_2016_22_1_a26,
author = {D. A. Tursunov},
title = {Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {271--281},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/}
}
TY - JOUR AU - D. A. Tursunov TI - Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 271 EP - 281 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/ LA - ru ID - TIMM_2016_22_1_a26 ER -
%0 Journal Article %A D. A. Tursunov %T Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points %J Trudy Instituta matematiki i mehaniki %D 2016 %P 271-281 %V 22 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/ %G ru %F TIMM_2016_22_1_a26
D. A. Tursunov. Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 271-281. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/
[1] Vazov V., Asimptoticheskie razlozheniya reshenii differentsialnykh uravnenii, Mir, M., 1968, 465 pp.
[2] Olver F.M., “Connection formulas for second-order differential equations with multiple turning points”, SIAM. J. Math. Anal., 8:1 (1977), 127–154 | DOI | MR | Zbl
[3] Olver F.M., “Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities”, SIAM. J. Math. Anal., 8:4 (1977), 673–700 | DOI | MR | Zbl
[4] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka; Fizmatlit, M., 1989, 336 pp. | MR
[5] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.
[6] Alymkulov K., “Method of boundary layer function to solve the boundary value problem for a singularly perturbed differential equation of the order two with a turning point”, Universal J. Appl. Math., 2:3 (2014), 119–124
[7] Alymkulov K., Khalmatov A.A., “Metod pogranfunktsii dlya resheniya modelnogo uravneniya Laitkhilla s regulyarnoi osoboi tochkoi”, Mat. zametki, 92:6 (2012), 819–824 | DOI | MR | Zbl
[8] Alymkulov K., Asylbekov T.D., Dolbeeva S.F., “Obobschenie metoda pogranfunktsii dlya resheniya kraevoi zadachi dlya bisingulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka”, Mat. zametki, 94:4 (2013), 484–487 | DOI | MR
[9] Alymkulov K., Zulpukarov A.Z., “Ravnomernaya asimptotika resheniya kraevoi zadachi singulyarno vozmuschennogo uravneniya vtorogo poryadka so slaboi osobennostyu”, Dokl. AN, 398:5 (2004), 583–586 | MR
[10] Tursunov D.A., “Ravnomernoe priblizhenie resheniya kraevoi zadachi bisingulyarno vozmuschennogo uravneniya vtorogo poryadka”, Vestn. OshGU, 2008, no. 5, 240–243
[11] Tursunov D.A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka s dvumya tochkami povorota”, Vestn. Tom. gos. un-ta. Matematika i mekhanika, 1(21) (2013), 34–40
[12] Fedoryuk M.V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR