Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 271-281

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the generalized method of boundary functions, we construct a uniform asymptotic expansion of the solution of the Dirichlet problem for a singularly perturbed linear inhomogeneous ordinary second-order differential equation with three turning points on the real axis. The constructed asymptotic series is a Puiseux series.
Keywords: asymptotic expansion, turning point, ordinary second-order differential equation, Airy equation, modified Bessel functions, Dirichlet problem, generalized boundary function, small parameter.
Mots-clés : singular (bisingular) perturbation
@article{TIMM_2016_22_1_a26,
     author = {D. A. Tursunov},
     title = {Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {271--281},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/}
}
TY  - JOUR
AU  - D. A. Tursunov
TI  - Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 271
EP  - 281
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/
LA  - ru
ID  - TIMM_2016_22_1_a26
ER  - 
%0 Journal Article
%A D. A. Tursunov
%T Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 271-281
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/
%G ru
%F TIMM_2016_22_1_a26
D. A. Tursunov. Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 271-281. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a26/