On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 263-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A regularizing algorithm for the approximate solution of integral equations of the first kind is investigated. The algorithm involves a finite-dimensional approximation of the problem; more exactly, the integral equation is discretized in two variables. An error estimate of the algorithm is obtained with the use of the equivalence of the generalized discrepancy method and the generalized discrepancy principle.
Keywords: regularization, error estimate, ill-posed problem.
@article{TIMM_2016_22_1_a25,
     author = {V. P. Tanana and A. I. Sidikova},
     title = {On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {263--270},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a25/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. I. Sidikova
TI  - On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 263
EP  - 270
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a25/
LA  - ru
ID  - TIMM_2016_22_1_a25
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. I. Sidikova
%T On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 263-270
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a25/
%G ru
%F TIMM_2016_22_1_a25
V. P. Tanana; A. I. Sidikova. On estimating the error of an approximate solution caused by the discretization of an integral equation of the first kind. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 263-270. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a25/

[1] Goncharskii A.V., Leonov A.S., Yagola A.G., “Konechnoraznostnaya approksimatsiya lineinykh nekorrektnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 14:1 (1974), 15–24

[2] Tanana V.P., “Proektsionnye metody i konechnoraznostnaya approksimatsiya lineinykh nekorrektnykh zadach”, Sib. mat. zhurn., 16:6 (1975), 1301–1307 | MR | Zbl

[3] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[4] Vasin V.V., “Diskretnaya skhodimost i konechnomernaya approksimatsiya regulyarizuyuschikh algoritmov”, Zhurn. vychisl. matematiki i mat. fiziki, 19:1 (1979), 11–21 | MR | Zbl

[5] Tanana V.P., Sidikova A.I., “Ob otsenke pogreshnosti regulyarizuyuschego algoritma, osnovannogo na obobschennom printsipe nevyazki, pri reshenii integralnykh uravnenii”, Zhurn. vychisl. metody i programmirovanie, 16:1 (2015), 1–9

[6] Tanana V.P., “Ob odnom proektsionno-iterativnom algoritme dlya operatornykh uravnenii pervogo roda s vozmuschennym operatorom”, Dokl. AN SSSR, 224:15 (1975), 1025–1029 | MR

[7] Tanana V.P., “O proektsionno-iterativnom algoritme resheniya nekorrektno postavlennykh zadach s priblizhenno zadannym operatorom”, Zhurn. vychisl. matematiki i mat. fiziki, 17:1 (1977), 15–23 | MR | Zbl

[8] Tikhonov A.N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[9] Goncharskii A.V., Leonov A.S., Yagola A.G., “Obobschennyi printsip nevyazki”, Zhurn. vychisl. matematiki i mat. fiziki, 13:2 (1973), 294–302