On graphs with vertices of two colors and groups with 3-transpositions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 257-262
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider labeled undirected graphs without loops or multiple edges with vertices of two colors. A coloring of a graph $\Gamma_n$ is called odd-connected if the removal of vertices of the first color produces an odd number of connected components. A general formula for the number $t_n$ of odd-connected colorings is found for certain families of embedded graphs $\Gamma_n$. The formula depends on two parameters. In the cases where two graphs in a family can be interpreted as Coxeter graphs for certain groups with 3-transpositions, specific formulas for the numbers $t_n$ are found.
Keywords:
labeled graph, graph coloring, generating function, Сoxeter graph, group with 3-transpositions.
@article{TIMM_2016_22_1_a24,
author = {A. I. Sozutov and I. O. Aleksandrova},
title = {On graphs with vertices of two colors and groups with 3-transpositions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {257--262},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a24/}
}
TY - JOUR AU - A. I. Sozutov AU - I. O. Aleksandrova TI - On graphs with vertices of two colors and groups with 3-transpositions JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 257 EP - 262 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a24/ LA - ru ID - TIMM_2016_22_1_a24 ER -
A. I. Sozutov; I. O. Aleksandrova. On graphs with vertices of two colors and groups with 3-transpositions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 257-262. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a24/