Voir la notice du chapitre de livre
Mots-clés : turbulence.
@article{TIMM_2016_22_1_a23,
author = {L. I. Rubina and O. N. Ul'yanov},
title = {On some properties of the {Navier-Stokes} equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {245--256},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a23/}
}
L. I. Rubina; O. N. Ul'yanov. On some properties of the Navier-Stokes equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 245-256. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a23/
[1] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, Drofa, M., 2003, 840 pp.
[2] Pukhnachev V.V., “Simmetrii v uravneniyakh Nave - Stoksa”, Uspekhi mekhaniki, 2006, no. 6, 3–76
[3] Brandolese L., “Fine properties of self-similar solutions of the Navier-Stokes equation”, Arch. Ration. Mech. Anal., 192:3 (2009), 375–401 | DOI | MR | Zbl
[4] Galdi G.P., “On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications”, Handbook of Mathematical Fluid Dynamics, I, Amsterdam, 2002, 653–791 | DOI | MR | Zbl
[5] Schonbek M.E., “Asymptotic behavior of solutions to free-dimensional Navier-Stokes equations”, Indiana Univ. Math. J., 41:3 (1992), 809–823 | DOI | MR | Zbl
[6] Miyakawa T., “On space-time decay properties of nonstationary incompressible Navier-Stokes flows in $R^n$”, Funkcialaj Ekvacioj, 43:3 (2000), 541–557 | MR | Zbl
[7] Fefferman C., “Existence and smoothness of the Navier-Stokes equation”, The millennium prize problems, Clay Math. Inst., Cambridge, 2006, 57–67 | MR | Zbl
[8] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR
[9] Galaktionov V.A., “On a spectrum of blow-up patterns for a higher-order semilinear parabolic equations”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457:2011 (2001), 1623–1643 | DOI | MR | Zbl
[10] Marsden J., McCracken J., The Hopf bifurcation and its applications, Appl. Math. Sci., 19, Springer-Verlag, New York, 1976, 408 pp. | DOI | MR | Zbl
[11] Kochetkov Yu.N., “Turbulentnost na sherokhovatoi stenke i novye fundamentalnye uravneniya pogranichnogo sloya”, Dvigatel, 2015, no. 3(99), 38–41
[12] Slezkin N.A., Dinamika vyazkoi neszhimaemoi zhidkosti, GITTL, M., 1955, 519 pp.
[13] Chorin A.J., Lectures on turbulence theory, Math. Lecture Ser., no. 5, Publish or Perish, Boston, 1976, 159 pp. | MR
[14] Kolmogorov A.N., “Rasseyanie energii pri lokalnoi izotropnoi turbulentnosti”, Dokl. AN., 32:1, 19–21
[15] Giga Y., “Weak and strong solotions of the Navier-Stokes initial value problem”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 887–910 | DOI | MR | Zbl
[16] Galdi G.P., An introduction to the mathematical theory of the Navier-Stokes equations, v. I, Springer Tracts in Nat. Ph., 38, Linear Steady Problems, Springer Verlag, New York, 1994, 450 p. pp. ; т. II, 39, Nonlinear Steady Problems, 323 p. с. | MR | Zbl | MR | Zbl
[17] Ermolin E.V., Rubina L.I., Sidorov A.F., “K zadache o dvukh porshnyakh”, Prikl. matematika i mekhanika, 32:5 (1968), 946–954
[18] Kurant P., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR
[19] Rubina L.I., “O rasprostranenii slabykh razryvov dlya kvazilineinykh sistem”, Prikl. matematika i mekhanika, 36:3 (1972), 435–443 | MR | Zbl
[20] Rubina L.I., Ulyanov O.N., “Ob odnom metode resheniya sistem nelineinykh uravnenii v chastnykh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 238–246 | MR
[21] Rubina L.I., Ulyanov O.N., “O reshenii uravneniya potentsiala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:1 (2008), 130–145 | MR
[22] Rubina L.I., Ulyanov O.N., “Reshenie nelineinykh uravnenii v chastnykh proizvodnykh geometricheskim metodom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 209–225
[23] Bradshaw P., Effects of streamwise curvature on turbulent flow, AGARDograph, no. 169, London, 1973, 134 pp.
[24] Pathak M., Dewan A., Dass A.K., “Effect of streamline curvature on flow field of a turbulent plane jet in cross-flow”, Mechanics Research Communications, 34 (2007), 241–248 | DOI | Zbl