On some properties of the Navier-Stokes equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 245-256
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss the initial and boundary value problems for the system of dimensionless Navier–Stokes equations describing the dynamics of a viscous incompressible fluid using the method of characteristics and the geometric method developed by the authors. Some properties of the formulation of these problems are considered. We study the effect of the Reynolds number on the flow of a viscous fluid near the surface of a body.
Keywords: Navier-Stokes equations, initial value problem, boundary value problem, Reynolds number
Mots-clés : turbulence.
@article{TIMM_2016_22_1_a23,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {On some properties of the {Navier-Stokes} equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {245--256},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a23/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - On some properties of the Navier-Stokes equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 245
EP  - 256
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a23/
LA  - ru
ID  - TIMM_2016_22_1_a23
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T On some properties of the Navier-Stokes equations
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 245-256
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a23/
%G ru
%F TIMM_2016_22_1_a23
L. I. Rubina; O. N. Ul'yanov. On some properties of the Navier-Stokes equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 245-256. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a23/

[1] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, Drofa, M., 2003, 840 pp.

[2] Pukhnachev V.V., “Simmetrii v uravneniyakh Nave - Stoksa”, Uspekhi mekhaniki, 2006, no. 6, 3–76

[3] Brandolese L., “Fine properties of self-similar solutions of the Navier-Stokes equation”, Arch. Ration. Mech. Anal., 192:3 (2009), 375–401 | DOI | MR | Zbl

[4] Galdi G.P., “On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications”, Handbook of Mathematical Fluid Dynamics, I, Amsterdam, 2002, 653–791 | DOI | MR | Zbl

[5] Schonbek M.E., “Asymptotic behavior of solutions to free-dimensional Navier-Stokes equations”, Indiana Univ. Math. J., 41:3 (1992), 809–823 | DOI | MR | Zbl

[6] Miyakawa T., “On space-time decay properties of nonstationary incompressible Navier-Stokes flows in $R^n$”, Funkcialaj Ekvacioj, 43:3 (2000), 541–557 | MR | Zbl

[7] Fefferman C., “Existence and smoothness of the Navier-Stokes equation”, The millennium prize problems, Clay Math. Inst., Cambridge, 2006, 57–67 | MR | Zbl

[8] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR

[9] Galaktionov V.A., “On a spectrum of blow-up patterns for a higher-order semilinear parabolic equations”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457:2011 (2001), 1623–1643 | DOI | MR | Zbl

[10] Marsden J., McCracken J., The Hopf bifurcation and its applications, Appl. Math. Sci., 19, Springer-Verlag, New York, 1976, 408 pp. | DOI | MR | Zbl

[11] Kochetkov Yu.N., “Turbulentnost na sherokhovatoi stenke i novye fundamentalnye uravneniya pogranichnogo sloya”, Dvigatel, 2015, no. 3(99), 38–41

[12] Slezkin N.A., Dinamika vyazkoi neszhimaemoi zhidkosti, GITTL, M., 1955, 519 pp.

[13] Chorin A.J., Lectures on turbulence theory, Math. Lecture Ser., no. 5, Publish or Perish, Boston, 1976, 159 pp. | MR

[14] Kolmogorov A.N., “Rasseyanie energii pri lokalnoi izotropnoi turbulentnosti”, Dokl. AN., 32:1, 19–21

[15] Giga Y., “Weak and strong solotions of the Navier-Stokes initial value problem”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 887–910 | DOI | MR | Zbl

[16] Galdi G.P., An introduction to the mathematical theory of the Navier-Stokes equations, v. I, Springer Tracts in Nat. Ph., 38, Linear Steady Problems, Springer Verlag, New York, 1994, 450 p. pp. ; т. II, 39, Nonlinear Steady Problems, 323 p. с. | MR | Zbl | MR | Zbl

[17] Ermolin E.V., Rubina L.I., Sidorov A.F., “K zadache o dvukh porshnyakh”, Prikl. matematika i mekhanika, 32:5 (1968), 946–954

[18] Kurant P., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR

[19] Rubina L.I., “O rasprostranenii slabykh razryvov dlya kvazilineinykh sistem”, Prikl. matematika i mekhanika, 36:3 (1972), 435–443 | MR | Zbl

[20] Rubina L.I., Ulyanov O.N., “Ob odnom metode resheniya sistem nelineinykh uravnenii v chastnykh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 238–246 | MR

[21] Rubina L.I., Ulyanov O.N., “O reshenii uravneniya potentsiala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:1 (2008), 130–145 | MR

[22] Rubina L.I., Ulyanov O.N., “Reshenie nelineinykh uravnenii v chastnykh proizvodnykh geometricheskim metodom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 209–225

[23] Bradshaw P., Effects of streamwise curvature on turbulent flow, AGARDograph, no. 169, London, 1973, 134 pp.

[24] Pathak M., Dewan A., Dass A.K., “Effect of streamline curvature on flow field of a turbulent plane jet in cross-flow”, Mechanics Research Communications, 34 (2007), 241–248 | DOI | Zbl