Codimensions of varieties of Poisson algebras with Lie nilpotent commutants
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 241-244

Voir la notice de l'article provenant de la source Math-Net.Ru

We study varieties of Poisson algebras defined by the identities $\{x_1,x_2\}\cdot\{x_3,x_4\}=0$ and $\{\{x_1,x_2\},\ldots,\{x_{2s+1}, x_{2s+2}\}\}=0$, $s\geq 1$. For each of the varieties we find a carrier algebra and build a basis of the $n$th proper polylinear space. We derive exact formulas for exponential generating functions for sequences of codimensions and proper codimensions as well as exact formulas for codimensions and proper codimensions.
Mots-clés : Poisson algebra
Keywords: variety of algebras, growth of a variety.
@article{TIMM_2016_22_1_a22,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {Codimensions of varieties of {Poisson} algebras with {Lie} nilpotent commutants},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--244},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - Codimensions of varieties of Poisson algebras with Lie nilpotent commutants
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 241
EP  - 244
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/
LA  - ru
ID  - TIMM_2016_22_1_a22
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T Codimensions of varieties of Poisson algebras with Lie nilpotent commutants
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 241-244
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/
%G ru
%F TIMM_2016_22_1_a22
S. M. Ratseev; O. I. Cherevatenko. Codimensions of varieties of Poisson algebras with Lie nilpotent commutants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 241-244. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/