Codimensions of varieties of Poisson algebras with Lie nilpotent commutants
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 241-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study varieties of Poisson algebras defined by the identities $\{x_1,x_2\}\cdot\{x_3,x_4\}=0$ and $\{\{x_1,x_2\},\ldots,\{x_{2s+1}, x_{2s+2}\}\}=0$, $s\geq 1$. For each of the varieties we find a carrier algebra and build a basis of the $n$th proper polylinear space. We derive exact formulas for exponential generating functions for sequences of codimensions and proper codimensions as well as exact formulas for codimensions and proper codimensions.
Mots-clés : Poisson algebra
Keywords: variety of algebras, growth of a variety.
@article{TIMM_2016_22_1_a22,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {Codimensions of varieties of {Poisson} algebras with {Lie} nilpotent commutants},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--244},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - Codimensions of varieties of Poisson algebras with Lie nilpotent commutants
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 241
EP  - 244
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/
LA  - ru
ID  - TIMM_2016_22_1_a22
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T Codimensions of varieties of Poisson algebras with Lie nilpotent commutants
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 241-244
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/
%G ru
%F TIMM_2016_22_1_a22
S. M. Ratseev; O. I. Cherevatenko. Codimensions of varieties of Poisson algebras with Lie nilpotent commutants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 241-244. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a22/

[1] Ratseev S.M., “Ekvivalentnye usloviya polinomialnosti rosta mnogoobrazii algebr Puassona”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 67:5 (2012), 8–13 | MR | Zbl

[2] Petrogradskii V.M., “O tipakh sverkheksponentsialnogo rosta tozhdestv v PI-algebrakh Li”, Fund. prikl. matematika, 1:4 (1995), 989–1007 | MR | Zbl

[3] Petrogradskii V.M., “Rost polinilpotentnykh mnogoobrazii algebr Li i bystro rastuschie tselye funktsii”, Mat. sb., 188:6 (1997), 119–138 | DOI | MR | Zbl

[4] Ratseev S.M., “Algebry Puassona polinomialnogo rosta”, Sib. matem. zhurn., 54:3 (2013), 700–711 | MR | Zbl

[5] Ratseev S.M., “Vzaimosvyaz algebr Puassona i algebr Li na yazyke tozhdestv”, Mat. zametki, 96:4 (2014), 567–577 | DOI | MR | Zbl