On $K_{1,3}$-free strictly Deza graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 231-234
Cet article a éte moissonné depuis la source Math-Net.Ru
A Deza graph with parameters $(v,k,b,a)$ is a $k$-regular graph with $v$ vertices where any two vertices have either $a$ or $b$ common neighbors. We describe strict Deza graphs that do not contain $K_{1,3}$ among their induced subgraphs and are unions of closed neighborhoods of two nonadjacent vertices. The latter condition means that there are two nonadjacent vertices such that any other vertex is adjacent to at least one of them.
Keywords:
$K_{1,3}$-free graphs, strictly Deza graphs.
@article{TIMM_2016_22_1_a20,
author = {A. V. Mityanina},
title = {On $K_{1,3}$-free strictly {Deza} graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {231--234},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a20/}
}
A. V. Mityanina. On $K_{1,3}$-free strictly Deza graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 231-234. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a20/
[1] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR
[2] M.Erickson [et al.], “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs, 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[3] Kabanov V.V., Mityanina A.V., “Rebernye tochnye grafy Deza”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 65–177 | MR
[4] Mityanina A.V., “O $K_{1,3}$-svobodnykh grafakh Deza diametra bolshe dvukh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 238–241 | MR