@article{TIMM_2016_22_1_a19,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {Small $AT4$-graphs and strongly regular subgraphs corresponding to them},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {220--230},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a19/}
}
TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh TI - Small $AT4$-graphs and strongly regular subgraphs corresponding to them JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 220 EP - 230 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a19/ LA - ru ID - TIMM_2016_22_1_a19 ER -
A. A. Makhnev; D. V. Paduchikh. Small $AT4$-graphs and strongly regular subgraphs corresponding to them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 220-230. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a19/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl
[2] Jurisic A., Koolen J., “Krein parameters and antipodal tight graphs with diameter 3 and 4”, Discrete Math., 244 (2002), 181–202 | DOI | MR | Zbl
[3] Makhnev A.A., Paduchikh D.V., “O silno regulyarnykh grafakh s sobstvennym znacheniem $\mu$ i ikh rasshireniyakh”, Tr. Instituta matematiki i mekhaniki UrO RAN, 19:3 (2013), 207–214 | MR
[4] Jurisic A., Koolen J., “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory Ser. A, 118:3 (2011), 842–852 | DOI | MR | Zbl
[5] Makhnev A.A., Paduchikh D.V., Khamgokova M.M., “Distantsionno regulyarnye lokalno psevdo $GQ(5,3)$-grafy”, Dokl. AN, 458:5 (2014), 518–522 | DOI | MR | Zbl
[6] Soicher L.H., Uniqueness of a distance-regular graph with intersection array $\{32,27,8,1;1,4,27,32\}$ and related topics, 2015, arXiv: arXiv:1512.05976 [math.CO]
[7] Brouwer A.E., Haemers W.H., “The Gewirtz graph: an exercise in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl