Small $AT4$-graphs and strongly regular subgraphs corresponding to them
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 220-230
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathcal M$ be the class of strongly regular graphs for which $\mu$ is a nonprincipal eigenvalue. Note that the neighborhood of any vertex of an $AT4$-graph lies in $\mathcal M$. Parameters of graphs from $\mathcal M$ were described earlier. We find intersection arrays of small $AT4$-graphs and of strongly regular graphs corresponding to them.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
strongly regular graph, $AT4$-graph, locally $\mathcal M$-graphs.
                    
                  
                
                
                @article{TIMM_2016_22_1_a19,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Small $AT4$-graphs and strongly regular subgraphs corresponding to them},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {220--230},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a19/}
}
                      
                      
                    TY - JOUR AU - A. A. Makhnev AU - D. V. Paduchikh TI - Small $AT4$-graphs and strongly regular subgraphs corresponding to them JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 220 EP - 230 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a19/ LA - ru ID - TIMM_2016_22_1_a19 ER -
A. A. Makhnev; D. V. Paduchikh. Small $AT4$-graphs and strongly regular subgraphs corresponding to them. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 220-230. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a19/
