On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 212-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A distance-regular graph $\Gamma$ with intersection array $\{204,175,48,1;1,12,175,204\}$ is an $AT4$-graph. The antipodal quotient $\bar \Gamma$ has parameters $(800,204,28,60)$. Automorphisms of the specified graphs are found. In particular, neither of the two graphs is edge-symmetric.
Keywords: strongly regular graph, eigenvalue of a graph, automorphism of a graph.
@article{TIMM_2016_22_1_a18,
     author = {A. A. Makhnev and M. S. Nirova and D. V. Paduchikh},
     title = {On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {212--219},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a18/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. S. Nirova
AU  - D. V. Paduchikh
TI  - On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 212
EP  - 219
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a18/
LA  - ru
ID  - TIMM_2016_22_1_a18
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. S. Nirova
%A D. V. Paduchikh
%T On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 212-219
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a18/
%G ru
%F TIMM_2016_22_1_a18
A. A. Makhnev; M. S. Nirova; D. V. Paduchikh. On automorphisms of a distance-regular graph with intersection array $\{204,175,48,1;1,12,175,204\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 212-219. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a18/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc, 1989, 495 pp. | MR | Zbl

[2] Makhnev A.A., Paduchikh D.V., “O silno regulyarnykh grafakh s sobstvennym znacheniem $\mu$ i ikh rasshireniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 207–214 | MR

[3] Makhnev A.A., Paduchikh D.V., “Ob avtomorfizmakh silno regulyarnykh grafov s parametrami (204,28,2,4) i (595,144,18,40)”, Diskretnaya matematika, algebra i ikh prilozheniya, tez. dokl. Mezhdunar. nauch. konf. (Minsk, 14-18 sentyabrya 2015 g.), Minsk, 2015, 119–120 | MR

[4] Cameron P.J., Permutation groups, London Math. Soc. Student Texts, no. 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[5] Brouwer A.E., Haemers W.H., “The Gewirtz graph: an exercise in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[6] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 512–515

[7] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl