On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 197-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the asymptotic behavior of the first boundary value problem for a second-order elliptic equation in the case where the small parameter is a factor at only one of the highest derivatives and the limit equation is an ordinary differential equation. Although the limit equation has the same order as the original equation, the problem under consideration is bisingular. We investigate the asymptotic behavior of this problem using the method of matched asymptotic expansions.
@article{TIMM_2016_22_1_a17,
     author = {E. F. Lelikova},
     title = {On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {197--211},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 197
EP  - 211
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/
LA  - ru
ID  - TIMM_2016_22_1_a17
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 197-211
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/
%G ru
%F TIMM_2016_22_1_a17
E. F. Lelikova. On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 197-211. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/

[1] Vishik M.I., Lyusternik L.A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[2] Trenogin V.A., “Razvitie i prilozhenie asimptoticheskogo metoda Lyusternika - Vishika”, Uspekhi mat. nauk, 25:4(154) (1970), 123–156 | MR | Zbl

[3] Naife A., Metod vozmuschenii, Mir, M., 1976, 455 pp. | MR

[4] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967, 310 pp.

[5] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[6] Lelikova E.F., “Ob asimptotike resheniya odnogo uravneniya s malym parametrom”, Dokl. RAN, 428:4 (2009), 447–450 | MR

[7] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v oblasti s uglovymi tochkami”, Matem. sb., 201:10 (2010), 93–108 | DOI | MR | Zbl

[8] Ilin A.M., Lelikova E.F., “Ob asimptotike resheniya odnogo uravneniya s malym parametrom”, Algebra i analiz, 22:6 (2010), 109–126 | MR

[9] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v oblasti s konicheskoi tochkoi na granitse”, Dokl. RAN, 442:2 (2012), 166–172 | MR | Zbl

[10] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v okrestnosti tochki peregiba granitsy”, Dokl. RAN, 447:2 (2012), 136–139 | MR | Zbl

[11] Lelikova E.F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:1 (2003), 107–119 | MR

[12] Lelikova E.F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh.”, Tr. Mosk. mat. ob-va, 71 (2009), 187–232