On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 197-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the asymptotic behavior of the first boundary value problem for a second-order elliptic equation in the case where the small parameter is a factor at only one of the highest derivatives and the limit equation is an ordinary differential equation. Although the limit equation has the same order as the original equation, the problem under consideration is bisingular. We investigate the asymptotic behavior of this problem using the method of matched asymptotic expansions.
			
            
            
            
          
        
      @article{TIMM_2016_22_1_a17,
     author = {E. F. Lelikova},
     title = {On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {197--211},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/}
}
                      
                      
                    TY - JOUR AU - E. F. Lelikova TI - On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 197 EP - 211 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/ LA - ru ID - TIMM_2016_22_1_a17 ER -
%0 Journal Article %A E. F. Lelikova %T On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion %J Trudy Instituta matematiki i mehaniki %D 2016 %P 197-211 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/ %G ru %F TIMM_2016_22_1_a17
E. F. Lelikova. On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 197-211. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a17/
