On a double boundary layer in a nonlinear boundary value problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 180-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A nonlinear second order differential equation with a small parameter at derivatives is considered in the case when the limiting algebraic equation has a multiple root. The matching method is applied to construct an asymptotic expansion for the solution of the boundary value problem. Two boundary layer variables with different scale are used to describe the asymptotic solution near the boundary.
Keywords: nonlinear equation, small parameter, asymptotics, boundary layer, matching method.
@article{TIMM_2016_22_1_a16,
     author = {S. A. Kordyukova and L. A. Kalyakin},
     title = {On a double boundary layer in a nonlinear boundary value problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--196},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a16/}
}
TY  - JOUR
AU  - S. A. Kordyukova
AU  - L. A. Kalyakin
TI  - On a double boundary layer in a nonlinear boundary value problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 180
EP  - 196
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a16/
LA  - ru
ID  - TIMM_2016_22_1_a16
ER  - 
%0 Journal Article
%A S. A. Kordyukova
%A L. A. Kalyakin
%T On a double boundary layer in a nonlinear boundary value problem
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 180-196
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a16/
%G ru
%F TIMM_2016_22_1_a16
S. A. Kordyukova; L. A. Kalyakin. On a double boundary layer in a nonlinear boundary value problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 180-196. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a16/

[1] Vishik M.I., Lyusternik L.A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5(77) (1957), 3–122 | MR | Zbl

[2] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[3] Vasileva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shk., M., 1990, 208 pp. | MR

[4] Ilin A.M., Leonychev Yu.A., Khachai O.Yu., “Asimptotika resheniya sistemy differentsialnykh uravnenii s malym parametrom i s osoboi nachalnoi tochkoi”, Mat. sb., 201:1 (2010), 81–102 | DOI | MR | Zbl

[5] Ilin A.M., Khachai O.Yu., “Struktura pogranichnykh sloev v singulyarnykh zadachakh”, Dokl. AN, 445:3 (2012), 256–258 | MR | Zbl

[6] Vasileva A.B., Butuzov V.F., Nefedov N.N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matematika, 4:3 (1998), 799–851 | MR | Zbl

[7] Butuzov V.F., “Ob osobennostyakh pogranichnogo sloya v singulyarno vozmuschennykh zadachakh s kratnym kornem vyrozhdennogo uravneniya”, Mat. zametki, 94:1 (2013), 68–80 | DOI | MR | Zbl

[8] Vasileva A.B., Pilyugin B.C., “Singulyarno vozmuschennye kraevye zadachi s pogranichnym sloem stepennogo tipa”, Differents. uravneniya, 43:3 (2009), 314–324 | MR

[9] Vasileva A.B., “Dvukhtochechnaya kraevaya zadacha dlya singulyarno vozmuschennogo uravneniya pri nalichii kratnykh kornei vyrozhdennogo uravneniya”, Zhurn. vychisl. matematiki i mat. fiziki, 49:6 (2009), 1067–1079 | MR | Zbl

[10] Kalyakin L.A., “Fiktivnye asimptoticheskie resheniya”, Ufim. mat. zhurn., 6:2 (2014), 45–66 | MR