On a double boundary layer in a nonlinear boundary value problem
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 180-196
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A nonlinear second order differential equation with a small parameter at derivatives is considered in the case when the limiting algebraic equation has a multiple root. The matching method is applied to construct an asymptotic expansion for the solution of the boundary value problem. Two boundary layer variables with different scale are used to describe the asymptotic solution near the boundary.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear equation, small parameter, asymptotics, boundary layer, matching method.
                    
                  
                
                
                @article{TIMM_2016_22_1_a16,
     author = {S. A. Kordyukova and L. A. Kalyakin},
     title = {On a double boundary layer in a nonlinear boundary value problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {180--196},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a16/}
}
                      
                      
                    TY - JOUR AU - S. A. Kordyukova AU - L. A. Kalyakin TI - On a double boundary layer in a nonlinear boundary value problem JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 180 EP - 196 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a16/ LA - ru ID - TIMM_2016_22_1_a16 ER -
S. A. Kordyukova; L. A. Kalyakin. On a double boundary layer in a nonlinear boundary value problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 180-196. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a16/
