Symmetrical $2$-extensions of a $2$-dimensional grid.~I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 159-179
Voir la notice de l'article provenant de la source Math-Net.Ru
The investigation of symmetrical $q$-extensions of a $d$-dimensional cubic grid $\Lambda^{d}$ is of interest both for group theory and for graph theory. For small $d\geq 1$ and $q>1$ (especially for $q=2$), the study of symmetrical $q$-extensions of $\Lambda^{d}$ is also of interest in connection with molecular crystallography and some phisycal theories. V.I. Trofimov proved that there are only finitely many symmetrical $q$-extensions of $\Lambda^{d}$ for any positive integer $d$. The aim of the present paper is to find all, up to equivalence, symmetrical 2-extensions of $\Lambda^{2}$. In this paper, which is the first part of our study, we find all, up to equivalence, realizations of symmetrical 2-extensions of $\Lambda^{2}$ for which only trivial automorphism fixes all blocks (we show that there are 87 such realizations). In the second part of the study, we will list the remaining realizations of symmetrical 2-extensions of $\Lambda^{2}$.
Keywords:
symmetrical extension of a graph, $d$-dimensional grid.
@article{TIMM_2016_22_1_a15,
author = {E. A. Konovalchik and K. V. Kostousov},
title = {Symmetrical $2$-extensions of a $2$-dimensional {grid.~I}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {159--179},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a15/}
}
TY - JOUR AU - E. A. Konovalchik AU - K. V. Kostousov TI - Symmetrical $2$-extensions of a $2$-dimensional grid.~I JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 159 EP - 179 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a15/ LA - ru ID - TIMM_2016_22_1_a15 ER -
E. A. Konovalchik; K. V. Kostousov. Symmetrical $2$-extensions of a $2$-dimensional grid.~I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 159-179. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a15/