A pronormality criterion for supplements to abelian normal subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 153-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A subgroup $H$ of a group $G$ is called pronormal if, for any element $g\in G$, the subgroups $H$ and $H^g$ are conjugate in the subgroup $\langle H, H^g\rangle$. We prove that, if a group $G$ has a normal abelian subgroup $V$ and a subgroup $H$ such that $G=HV$, then $H$ is pronormal in $G$ if and only if $U=N_U(H)[H,U]$ for any $H$-invariant subgroup $U$ of the group $V$. Using this fact, we prove that the simple symplectic group $\mathrm{PSp}_{6n}(q)$ with $q\equiv\pm 3\pmod 8$ contains a nonpronormal subgroup of odd index. Hense, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.
Keywords: pronormal subgroup, complement of a subgroup, supplement of a subgroup, finite simple group, subgroup of odd index.
@article{TIMM_2016_22_1_a14,
     author = {A. S. Kondrat'ev and N. V. Maslova and D. O. Revin},
     title = {A pronormality criterion for supplements to abelian normal subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--158},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a14/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - N. V. Maslova
AU  - D. O. Revin
TI  - A pronormality criterion for supplements to abelian normal subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 153
EP  - 158
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a14/
LA  - ru
ID  - TIMM_2016_22_1_a14
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A N. V. Maslova
%A D. O. Revin
%T A pronormality criterion for supplements to abelian normal subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 153-158
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a14/
%G ru
%F TIMM_2016_22_1_a14
A. S. Kondrat'ev; N. V. Maslova; D. O. Revin. A pronormality criterion for supplements to abelian normal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 153-158. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a14/

[1] Vdovin E.P., Revin D.O., “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. mat. zhurn., 53:3 (2012), 527–542 | MR | Zbl

[2] Kondratev A.S., Maslova N.V., Revin D.O., “O pronormalnosti podgrupp nechetnogo indeksa v konechnykh prostykh gruppakh”, Sib. mat. zhurn., 56:6 (2015), 1375–1383

[3] Isaacs M.I., Finite group theory, Amer. Math. Soc., Providence, 2008, 365 pp. | MR | Zbl

[4] Kondratev A.S., “Normalizatory silovskikh 2-podgrupp v konechnykh prostykh gruppakh”, Mat. zametki, 78:3 (2005), 368–376 | DOI | MR | Zbl

[5] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990, 303 pp. | MR | Zbl

[6] Maslova N.V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh prostykh klassicheskikh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 100–118