On the convergence of solutions of variational problems with bilateral obstacles in variable domains
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 140-152

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sufficient conditions for the convergence of minimizers and minimum values of integral and more general functionals on sets of functions defined by bilateral obstacles in variable domains. The given obstacles are elements of the corresponding Sobolev space, and the degeneration on a set of measure zero is admitted for the difference of the upper and lower obstacles. We show that a weakening of the condition of positivity of this difference on a set of full measure may lead to a certain violation of the established convergence result.
Keywords: integral functional, minimizer, minimum value, bilateral obstacles, strong connected-ness.
Mots-clés : $\Gamma$-convergence
@article{TIMM_2016_22_1_a13,
     author = {A. A. Kovalevsky},
     title = {On the convergence of solutions of variational problems with bilateral obstacles in variable domains},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {140--152},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - On the convergence of solutions of variational problems with bilateral obstacles in variable domains
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 140
EP  - 152
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/
LA  - ru
ID  - TIMM_2016_22_1_a13
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T On the convergence of solutions of variational problems with bilateral obstacles in variable domains
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 140-152
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/
%G ru
%F TIMM_2016_22_1_a13
A. A. Kovalevsky. On the convergence of solutions of variational problems with bilateral obstacles in variable domains. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 140-152. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/