Mots-clés : $\Gamma$-convergence
@article{TIMM_2016_22_1_a13,
author = {A. A. Kovalevsky},
title = {On the convergence of solutions of variational problems with bilateral obstacles in variable domains},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {140--152},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/}
}
TY - JOUR AU - A. A. Kovalevsky TI - On the convergence of solutions of variational problems with bilateral obstacles in variable domains JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 140 EP - 152 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/ LA - ru ID - TIMM_2016_22_1_a13 ER -
A. A. Kovalevsky. On the convergence of solutions of variational problems with bilateral obstacles in variable domains. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 140-152. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/
[1] Kovalevskii A.A., “O nekotorykh voprosakh, svyazannykh s problemoi usredneniya variatsionnykh zadach dlya funktsionalov s peremennoi oblastyu opredeleniya”, Sovremennyi analiz i ego prilozheniya, Naukova dumka, Kiev, 1989, 62–70 | MR
[2] Kovalevsky A.A., “Obstacle problems in variable domains”, Complex Var. Elliptic Equ., 56:12 (2011), 1071–1083 | DOI | MR | Zbl
[3] Kovalevskii A.A., “$G$-skhodimost i usrednenie nelineinykh ellipticheskikh operatorov divergentnogo vida s peremennoi oblastyu opredeleniya”, Izv. RAN. Ser. matematicheskaya, 58:3 (1994), 3–35 | MR
[4] Murat F., Sur l'homogeneisation d'inequations elliptiques du 2`eme ordre, relatives au convexe $K(\psi_1,\psi_2)=\{v\in H^1_0(\Omega) | \psi_1\leqslant v\leqslant\psi_2\text{p.p. dans}\Omega\}$, Publ. Laboratoire d'Analyse Num'erique, no. 76013, Univ. Paris VI, 1976, 23 pp.
[5] Dal Maso G., “Asymptotic behaviour of minimum problems with bilateral obstacles”, Ann. Mat. Pura Appl. (4), 129:1 (1981), 327–366 | DOI | MR
[6] Khruslov E.Ya., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Mat. sb., 106:4 (1978), 604–621 | MR | Zbl
[7] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR
[8] Adams R.A., Sobolev spaces, Acad. Press, New York, 1975, 286 pp. | MR | Zbl
[9] Kovalevskii A.A., “Usloviya $\Gamma$-skhodimosti i usrednenie integralnykh funktsionalov s razlichnymi oblastyami opredeleniya”, Dokl. AN USSR, 1991, no. 4, 5–8 | MR
[10] Kovalevskii A.A., “O neobkhodimykh i dostatochnykh usloviyakh $\Gamma$-skhodimosti integralnykh funktsionalov s razlichnymi oblastyami opredeleniya”, Nelineinye granichnye zadachi, no. 4, 1992, 29–39 | MR
[11] Rudakova O.A., “O $\Gamma$-skhodimosti integralnykh funktsionalov, opredelennykh na razlichnykh vesovykh prostranstvakh Soboleva”, Ukr. mat. zhurn., 61:1 (2009), 99–115 | MR | Zbl
[12] Kovalevsky A.A., “On $L^1$-functions with a very singular behaviour”, Nonlinear Anal., 85 (2013), 66–77 | DOI | MR | Zbl
[13] Kovalevsky A.A., Rudakova O.A., “Variational problems with pointwise constraints and degeneration in variable domains”, Differ. Equ. Appl., 1:4 (2009), 517–559 | MR | Zbl