On the convergence of solutions of variational problems with bilateral obstacles in variable domains
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 140-152
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish sufficient conditions for the convergence of minimizers and minimum values of integral and more general functionals on sets of functions defined by bilateral obstacles in variable domains. The given obstacles are elements of the corresponding Sobolev space, and the degeneration on a set of measure zero is admitted for the difference of the upper and lower obstacles. We show that a weakening of the condition of positivity of this difference on a set of full measure may lead to a certain violation of the established convergence result.
Keywords:
integral functional, minimizer, minimum value, bilateral obstacles, strong connected-ness.
Mots-clés : $\Gamma$-convergence
Mots-clés : $\Gamma$-convergence
@article{TIMM_2016_22_1_a13,
author = {A. A. Kovalevsky},
title = {On the convergence of solutions of variational problems with bilateral obstacles in variable domains},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {140--152},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/}
}
TY - JOUR AU - A. A. Kovalevsky TI - On the convergence of solutions of variational problems with bilateral obstacles in variable domains JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 140 EP - 152 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/ LA - ru ID - TIMM_2016_22_1_a13 ER -
%0 Journal Article %A A. A. Kovalevsky %T On the convergence of solutions of variational problems with bilateral obstacles in variable domains %J Trudy Instituta matematiki i mehaniki %D 2016 %P 140-152 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/ %G ru %F TIMM_2016_22_1_a13
A. A. Kovalevsky. On the convergence of solutions of variational problems with bilateral obstacles in variable domains. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 140-152. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a13/