On some exact solutions of the nonlinear heat equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 112-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to finding invariant solutions of the nonlinear heat (filter) equation without sources or sinks in the case of one spatial variable and a power dependence of the thermal conduction coefficient on the temperature. The construction procedure is reduced to Cauchy problems for ordinary differential equations with a singularity at the highest derivative. An existence and uniqueness theorem is proved for solutions of such problems in the class of analytic functions (in the form of a converging series). An estimate is obtained for the convergence domain of this series in one particular case.
Keywords: partial differential equations, nonlinear heat (filter) equation, Cauchy problem.
Mots-clés : invariant solution
@article{TIMM_2016_22_1_a11,
     author = {A. L. Kazakov and S. S. Orlov},
     title = {On some exact solutions of the nonlinear heat equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--123},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - S. S. Orlov
TI  - On some exact solutions of the nonlinear heat equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 112
EP  - 123
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/
LA  - ru
ID  - TIMM_2016_22_1_a11
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A S. S. Orlov
%T On some exact solutions of the nonlinear heat equation
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 112-123
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/
%G ru
%F TIMM_2016_22_1_a11
A. L. Kazakov; S. S. Orlov. On some exact solutions of the nonlinear heat equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 112-123. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/

[1] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR

[2] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[3] V.K. Andreev, O.V. Kaptsov, V.V. Pukhnachev, A.A. Rodionov, Applications of group-theoretical methods in hydrodynamics, Springer, New York, 2010, 396 pp.

[4] Sidorov A.F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[5] Vazquez J.L., The porous medium equation: Mathematical theory, Clarendon Press, Oxford, 2007, 648 pp. | MR

[6] Dorodnitsyn V.A., “Ob invariantnykh resheniyakh uravneniya nelineinoi teploprovodnosti s istochnikom”, Zhurn. vychisl. matematiki i mat. fiziki, 22:6 (1982), 1393–1400 | MR | Zbl

[7] Lagno V.I., Spichak S.V., Stognii V.I., Simmetriinyi analiz uravnenii evolyutsionnogo tipa, In-t kompyuternykh issledovanii, M.; Izhevsk, 2004, 392 pp.

[8] Rubina L.I., Ulyanov O.N., “Reshenie nelineinykh uravnenii v chastnykh proizvodnykh geometricheskim metodom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 265–280

[9] Kaptsov O.V., Metody integrirovaniya uravnenii s chastnymi proizvodnymi, Fizmatlit, M., 2009, 184 pp.

[10] Zeldovich Ya.B., Kompaneets A.S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sbornik, posvyaschennyi 70-letiyu A.F. Ioffe, Izd-vo AN SSSR, M., 1950, 61–71

[11] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp. | MR

[12] Bautin S.P., Analiticheskaya teplovaya volna, Fizmatlit, M., 2003, 87 pp.

[13] Kazakov A.L., Lempert A.A., “O suschestvovanii i edinstvennosti kraevoi zadachi dlya parabolicheskogo uravneniya nestatsionarnoi filtratsii”, Prikl. mekhanika i tekhn. fizika, 54:2 (2013), 97–105 | MR | Zbl

[14] Vaganova N.A., “Postroenie novykh klassov reshenii nelineinogo uravneniya filtratsii s pomoschyu spetsialnykh soglasovannykh ryadov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:2 (2003), 10–20 | MR

[15] Kazakov A.L., “Primenenie kharakteristicheskikh ryadov dlya postroeniya reshenii nelineinykh parabolicheskikh uravnenii i sistem s vyrozhdeniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 114–122

[16] Kazakov A.L., Lempert A.A., “Analiticheskoe i chislennoe issledovanie odnoi kraevoi zadachi nelineinoi filtratsii s vyrozhdeniem”, Vychisl. tekhnologii, 17:1 (2012), 57–68 | MR

[17] Kazakov A.L., Spevak L.F., “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Model., 37:10-11 (2013), 6918–6928 | DOI | MR

[18] Kazakov A.L., Kuznetsov P.A., Spevak L.F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 119–129 | MR

[19] Zaitsev V.F., Polyanin A.D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001, 576 pp. | MR

[20] Polyanin A.D., Zaitsev V.F., Zhurov A.I., Metody reshenii nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005, 256 pp.