On some exact solutions of the nonlinear heat equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 112-123

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to finding invariant solutions of the nonlinear heat (filter) equation without sources or sinks in the case of one spatial variable and a power dependence of the thermal conduction coefficient on the temperature. The construction procedure is reduced to Cauchy problems for ordinary differential equations with a singularity at the highest derivative. An existence and uniqueness theorem is proved for solutions of such problems in the class of analytic functions (in the form of a converging series). An estimate is obtained for the convergence domain of this series in one particular case.
Keywords: partial differential equations, nonlinear heat (filter) equation, Cauchy problem.
Mots-clés : invariant solution
@article{TIMM_2016_22_1_a11,
     author = {A. L. Kazakov and S. S. Orlov},
     title = {On some exact solutions of the nonlinear heat equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--123},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - S. S. Orlov
TI  - On some exact solutions of the nonlinear heat equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 112
EP  - 123
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/
LA  - ru
ID  - TIMM_2016_22_1_a11
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A S. S. Orlov
%T On some exact solutions of the nonlinear heat equation
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 112-123
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/
%G ru
%F TIMM_2016_22_1_a11
A. L. Kazakov; S. S. Orlov. On some exact solutions of the nonlinear heat equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 112-123. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/