On some exact solutions of the nonlinear heat equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 112-123
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to finding invariant solutions of the nonlinear heat (filter) equation without sources or sinks in the case of one spatial variable and a power dependence of the thermal conduction coefficient on the temperature. The construction procedure is reduced to Cauchy problems for ordinary differential equations with a singularity at the highest derivative. An existence and uniqueness theorem is proved for solutions of such problems in the class of analytic functions (in the form of a converging series). An estimate is obtained for the convergence domain of this series in one particular case.
Keywords:
partial differential equations, nonlinear heat (filter) equation, Cauchy problem.
Mots-clés : invariant solution
Mots-clés : invariant solution
@article{TIMM_2016_22_1_a11,
author = {A. L. Kazakov and S. S. Orlov},
title = {On some exact solutions of the nonlinear heat equation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {112--123},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/}
}
A. L. Kazakov; S. S. Orlov. On some exact solutions of the nonlinear heat equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 112-123. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a11/