Decidability of universal theories and axiomatizability of hereditary classes of graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 100-111
Voir la notice de l'article provenant de la source Math-Net.Ru
Hereditary classes of graphs defined by forbidden non-induced subgraphs are studied by model theory methods. Problems of universal axiomatizability and recursive axiomatizability of hereditary classes of graphs are considered. It is shown that a hereditary class of graphs is universally axiomatizable if and only if it can be defined in terms of finite forbidden subgraphs. It is proved that the universal theory of graphs and the universal theory of any recursive axiomatizable hereditary class of graphs are decidable.
Keywords:
hereditary class of graphs, universal theory, universal axiomatizability, decidability.
@article{TIMM_2016_22_1_a10,
author = {A. V. Il'ev},
title = {Decidability of universal theories and axiomatizability of hereditary classes of graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {100--111},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a10/}
}
TY - JOUR AU - A. V. Il'ev TI - Decidability of universal theories and axiomatizability of hereditary classes of graphs JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 100 EP - 111 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a10/ LA - ru ID - TIMM_2016_22_1_a10 ER -
A. V. Il'ev. Decidability of universal theories and axiomatizability of hereditary classes of graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 100-111. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a10/