Estimation of the evolution of a random set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 14-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An estimation problem for a random set that is a reachability domain of the Ito differential equation with respect to its initial data is considered. The Markov property of the reachability set in the space of closed sets is proved. For the purposes of numerical solution, a random initial set of the differential equation is approximated by a finite set on an integer multidimensional grid, and the differential equation is replaced by a multistep Markov chain. Examples are considered.
Keywords: stochastic differential equation, random set.
Mots-clés : Markov chain
@article{TIMM_2016_22_1_a1,
     author = {B. I. Anan'ev},
     title = {Estimation of the evolution of a random set},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--25},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a1/}
}
TY  - JOUR
AU  - B. I. Anan'ev
TI  - Estimation of the evolution of a random set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 14
EP  - 25
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a1/
LA  - ru
ID  - TIMM_2016_22_1_a1
ER  - 
%0 Journal Article
%A B. I. Anan'ev
%T Estimation of the evolution of a random set
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 14-25
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a1/
%G ru
%F TIMM_2016_22_1_a1
B. I. Anan'ev. Estimation of the evolution of a random set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 14-25. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a1/

[1] Arnold L., Stochastic differential equations: Theory and applications, John Wiley Sons, New York, 1974, 228 pp. | MR | Zbl

[2] Oksendal B., Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003, 406 pp.

[3] Materon Zh., Sluchainye mnozhestva i integralnaya geometriya, Mir, M., 1978, 318 pp. | MR

[4] Nguyen Hung T., An introduction to random sets, Chapman Hall, Boca Raton, 2006, 257 pp. | MR | Zbl

[5] Molchanov I., Theory of random sets, Springer Verlag, London, 2005, 488 pp. | MR | Zbl

[6] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhauser, Cham, 2014, 445 pp. | MR | Zbl

[7] Ananev B.I., “Otsenivanie sostoyanii obratnykh stokhasticheskikh differentsialnykh uravnenii so statisticheski neopredelennymi pomekhami”, Tr. XII Vseros. sovesch. po probl. upr. VSPU-2014., Moskva, 2014, 2604–2611

[8] Ananyev B.I., “State estimation for linear stochastic differential equations with uncertain disturbances via BSDE approach”, AIP Conf. Proc., 1487 (2012), 143–150 | DOI

[9] Gikhman I.I., Skorokhod A.V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 611 pp. | MR

[10] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 399 pp.

[11] Schmelzer B., “Set-valued assessments of solutions to stochastic differential equations with random set parameters”, J. Math. Anal. Appl., 400:2 (2013), 425–438 | DOI | MR | Zbl

[12] Liptser R.Sh., Shiryaev A.N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR

[13] Himmelberg C., “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | MR | Zbl

[14] Miranda E., Couso I., Gil P., “Approximations of upper and lower probabilities by measurable selections”, Inform. Sci., 180:10 (2010), 1407–1417 | DOI | MR | Zbl

[15] Venttsel A.D., Kurs teorii sluchainykh protsessov, Nauka, Fizmatlit, M., 1996, 399 pp. | MR

[16] Yong J, Zhou X., Stochastic controls: Hamiltonian systems and HJB equations, SpringerVerlag, New York, 1999, 438 pp. | MR | Zbl

[17] Milstein G.N., Numerical integration of stochastic differential equations, Mathematics and Its Appl., 313, Kluwer Academic Publishers Group, Dordrecht, 1995, 169 pp. | MR

[18] Kloeden P.E., Platen E., Numerical solution of stochastic differential equations, Appl. of Math., Springer-Verlag, Berlin, 1995, 632 pp. | MR

[19] Kuznetsov D.F., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo S.-Peterb. un-ta, CPb., 2001, 710 pp.