Mots-clés : Markov chain
@article{TIMM_2016_22_1_a1,
author = {B. I. Anan'ev},
title = {Estimation of the evolution of a random set},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {14--25},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a1/}
}
B. I. Anan'ev. Estimation of the evolution of a random set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 14-25. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a1/
[1] Arnold L., Stochastic differential equations: Theory and applications, John Wiley Sons, New York, 1974, 228 pp. | MR | Zbl
[2] Oksendal B., Stokhasticheskie differentsialnye uravneniya, Mir, M., 2003, 406 pp.
[3] Materon Zh., Sluchainye mnozhestva i integralnaya geometriya, Mir, M., 1978, 318 pp. | MR
[4] Nguyen Hung T., An introduction to random sets, Chapman Hall, Boca Raton, 2006, 257 pp. | MR | Zbl
[5] Molchanov I., Theory of random sets, Springer Verlag, London, 2005, 488 pp. | MR | Zbl
[6] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhauser, Cham, 2014, 445 pp. | MR | Zbl
[7] Ananev B.I., “Otsenivanie sostoyanii obratnykh stokhasticheskikh differentsialnykh uravnenii so statisticheski neopredelennymi pomekhami”, Tr. XII Vseros. sovesch. po probl. upr. VSPU-2014., Moskva, 2014, 2604–2611
[8] Ananyev B.I., “State estimation for linear stochastic differential equations with uncertain disturbances via BSDE approach”, AIP Conf. Proc., 1487 (2012), 143–150 | DOI
[9] Gikhman I.I., Skorokhod A.V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 611 pp. | MR
[10] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 399 pp.
[11] Schmelzer B., “Set-valued assessments of solutions to stochastic differential equations with random set parameters”, J. Math. Anal. Appl., 400:2 (2013), 425–438 | DOI | MR | Zbl
[12] Liptser R.Sh., Shiryaev A.N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR
[13] Himmelberg C., “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | MR | Zbl
[14] Miranda E., Couso I., Gil P., “Approximations of upper and lower probabilities by measurable selections”, Inform. Sci., 180:10 (2010), 1407–1417 | DOI | MR | Zbl
[15] Venttsel A.D., Kurs teorii sluchainykh protsessov, Nauka, Fizmatlit, M., 1996, 399 pp. | MR
[16] Yong J, Zhou X., Stochastic controls: Hamiltonian systems and HJB equations, SpringerVerlag, New York, 1999, 438 pp. | MR | Zbl
[17] Milstein G.N., Numerical integration of stochastic differential equations, Mathematics and Its Appl., 313, Kluwer Academic Publishers Group, Dordrecht, 1995, 169 pp. | MR
[18] Kloeden P.E., Platen E., Numerical solution of stochastic differential equations, Appl. of Math., Springer-Verlag, Berlin, 1995, 632 pp. | MR
[19] Kuznetsov D.F., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo S.-Peterb. un-ta, CPb., 2001, 710 pp.