Finite groups whose prime graphs do not contain triangles.~II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of finite groups whose prime graphs do not contain triangles is continued. The main result of the given part of the work is the following theorem: if $G$ is a finite non-solvable group whose prime graph does not contain triangles and $S(G)$ is the greatest solvable normal subgroup in $G$ then $|\pi(G)|\leq 8$ and $|\pi(S(G))|\leq 3$. Furthermore, a detailed description of the structure of a group $G$ satisfying the conditions of the theorem in the case when $\pi(S(G))$ contains a number which does not divide the order of the group $G/S(G)$. It is also constructed an example of a finite solvable group with the Fitting length 5 whose prime graph is 4-cycle. This completes the determination of exact bound for the Fitting length of finite solvable groups whose prime graphs do not contain triangles.
Keywords: finite group, fitting length, prime graph.
Mots-clés : non-solvable group, solvable group
@article{TIMM_2016_22_1_a0,
     author = {O. A. Alekseeva and A. S. Kondrat'ev},
     title = {Finite groups whose prime graphs do not contain {triangles.~II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/}
}
TY  - JOUR
AU  - O. A. Alekseeva
AU  - A. S. Kondrat'ev
TI  - Finite groups whose prime graphs do not contain triangles.~II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 3
EP  - 13
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/
LA  - ru
ID  - TIMM_2016_22_1_a0
ER  - 
%0 Journal Article
%A O. A. Alekseeva
%A A. S. Kondrat'ev
%T Finite groups whose prime graphs do not contain triangles.~II
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 3-13
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/
%G ru
%F TIMM_2016_22_1_a0
O. A. Alekseeva; A. S. Kondrat'ev. Finite groups whose prime graphs do not contain triangles.~II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/