Finite groups whose prime graphs do not contain triangles. II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 3-13
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The study of finite groups whose prime graphs do not contain triangles is continued. The main result of the given part of the work is the following theorem: if $G$ is a finite non-solvable group whose prime graph does not contain triangles and $S(G)$ is the greatest solvable normal subgroup in $G$ then $|\pi(G)|\leq 8$ and $|\pi(S(G))|\leq 3$. Furthermore, a detailed description of the structure of a group $G$ satisfying the conditions of the theorem in the case when $\pi(S(G))$ contains a number which does not divide the order of the group $G/S(G)$. It is also constructed an example of a finite solvable group with the Fitting length 5 whose prime graph is 4-cycle. This completes the determination of exact bound for the Fitting length of finite solvable groups whose prime graphs do not contain triangles.
Keywords: finite group, fitting length, prime graph.
Mots-clés : non-solvable group, solvable group
@article{TIMM_2016_22_1_a0,
     author = {O. A. Alekseeva and A. S. Kondrat'ev},
     title = {Finite groups whose prime graphs do not contain {triangles.~II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--13},
     year = {2016},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/}
}
TY  - JOUR
AU  - O. A. Alekseeva
AU  - A. S. Kondrat'ev
TI  - Finite groups whose prime graphs do not contain triangles. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 3
EP  - 13
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/
LA  - ru
ID  - TIMM_2016_22_1_a0
ER  - 
%0 Journal Article
%A O. A. Alekseeva
%A A. S. Kondrat'ev
%T Finite groups whose prime graphs do not contain triangles. II
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 3-13
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/
%G ru
%F TIMM_2016_22_1_a0
O. A. Alekseeva; A. S. Kondrat'ev. Finite groups whose prime graphs do not contain triangles. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/

[1] Alekseeva O.A., Kondratev A.S., “Konechnye gruppy, grafy prostykh chisel kotorykh ne soderzhat treugolnikov. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 3–12 | MR

[2] Kondratev A.S., Osinovskaya A.A., Suprunenko I.D., “O povedenii elementov prostogo poryadka iz tsikla Zingera v predstavleniyakh spetsialnoi lineinoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 179–186 | MR

[3] Kondratev A.S., Khramtsov I.V., “O konechnykh triprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 150–158

[4] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159

[5] Mazurov V.D., “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[6] Podufalov N.D., “Konechnye prostye gruppy bez elementov poryadka”, Algebra i logika, 16:2 (1977), 200–203 | MR | Zbl

[7] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[8] C. Jansen [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | MR | Zbl

[9] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[10] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp. | MR | Zbl

[11] Brandl R., “Finite groups all of whose elements are of prime power order”, Boll. Un. Mat. Ital. A (5), 18:3 (1981), 491–493 | MR | Zbl

[12] Dornhoff L., Group representation theory. Part A., Dekker, N. Y., 1971, 254 pp. | MR | Zbl

[13] Fleischmann P., Lempken W., Tiep P.H., “Finite $p'$-semiregular groups”, J. Algebra, 188:2 (1997), 547–579 | DOI | MR | Zbl

[14] Fletcher L.R., Stellmacher B., Stewart W.B., “Endl1iche Gruppen, die kein Element der Ordnung 6 enthalten”, Quart. J. Math. Oxford. Ser. (2), 28:110 (1977), 143–154 | DOI | MR | Zbl

[15] the GAP Group, GAP-Groups, Algorithms, and Programming. Ver. 4.4.12, 2008 URL: http://www.gap-system.org

[16] Gordon L.M., “Finite simple groups with no elements of order six”, Bull. Austral. Math. Soc., 17:2 (1977), 235–246 | DOI | MR | Zbl

[17] Gorenstein D., Finite groups, Harper and Row, N. Y., 1968, 528 pp. | MR | Zbl

[18] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups. Number 3. Part I., Math. Surveys Monogr., 40, no. 3, Amer. Math. Soc., Providence, 1998, 420 pp. | MR

[19] Higman G., “Finite groups in which every element has prime power order”, J. London Math. Soc. (2), 32 (1957), 335–342 | DOI | MR | Zbl

[20] Higman G., Odd characterizations of finite simple groups: lecture notes, University Michigan, Michigan, 1968, 77 pp.

[21] Lucido M.C., “Groups in which the prime graph is a tree”, Boll. Unione Mat. Ital. (8), 5-B:1 (2002), 131–148 | MR | Zbl

[22] Stewart W.B., “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc., 426:4 (1973), 653–680 | DOI | MR

[23] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl