Voir la notice du chapitre de livre
Mots-clés : non-solvable group, solvable group
@article{TIMM_2016_22_1_a0,
author = {O. A. Alekseeva and A. S. Kondrat'ev},
title = {Finite groups whose prime graphs do not contain {triangles.~II}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {3--13},
year = {2016},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/}
}
O. A. Alekseeva; A. S. Kondrat'ev. Finite groups whose prime graphs do not contain triangles. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/
[1] Alekseeva O.A., Kondratev A.S., “Konechnye gruppy, grafy prostykh chisel kotorykh ne soderzhat treugolnikov. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 3–12 | MR
[2] Kondratev A.S., Osinovskaya A.A., Suprunenko I.D., “O povedenii elementov prostogo poryadka iz tsikla Zingera v predstavleniyakh spetsialnoi lineinoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 179–186 | MR
[3] Kondratev A.S., Khramtsov I.V., “O konechnykh triprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 150–158
[4] Kondratev A.S., Khramtsov I.V., “O konechnykh chetyreprimarnykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 142–159
[5] Mazurov V.D., “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl
[6] Podufalov N.D., “Konechnye prostye gruppy bez elementov poryadka”, Algebra i logika, 16:2 (1977), 200–203 | MR | Zbl
[7] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl
[8] C. Jansen [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | MR | Zbl
[9] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl
[10] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp. | MR | Zbl
[11] Brandl R., “Finite groups all of whose elements are of prime power order”, Boll. Un. Mat. Ital. A (5), 18:3 (1981), 491–493 | MR | Zbl
[12] Dornhoff L., Group representation theory. Part A., Dekker, N. Y., 1971, 254 pp. | MR | Zbl
[13] Fleischmann P., Lempken W., Tiep P.H., “Finite $p'$-semiregular groups”, J. Algebra, 188:2 (1997), 547–579 | DOI | MR | Zbl
[14] Fletcher L.R., Stellmacher B., Stewart W.B., “Endl1iche Gruppen, die kein Element der Ordnung 6 enthalten”, Quart. J. Math. Oxford. Ser. (2), 28:110 (1977), 143–154 | DOI | MR | Zbl
[15] the GAP Group, GAP-Groups, Algorithms, and Programming. Ver. 4.4.12, 2008 URL: http://www.gap-system.org
[16] Gordon L.M., “Finite simple groups with no elements of order six”, Bull. Austral. Math. Soc., 17:2 (1977), 235–246 | DOI | MR | Zbl
[17] Gorenstein D., Finite groups, Harper and Row, N. Y., 1968, 528 pp. | MR | Zbl
[18] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups. Number 3. Part I., Math. Surveys Monogr., 40, no. 3, Amer. Math. Soc., Providence, 1998, 420 pp. | MR
[19] Higman G., “Finite groups in which every element has prime power order”, J. London Math. Soc. (2), 32 (1957), 335–342 | DOI | MR | Zbl
[20] Higman G., Odd characterizations of finite simple groups: lecture notes, University Michigan, Michigan, 1968, 77 pp.
[21] Lucido M.C., “Groups in which the prime graph is a tree”, Boll. Unione Mat. Ital. (8), 5-B:1 (2002), 131–148 | MR | Zbl
[22] Stewart W.B., “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc., 426:4 (1973), 653–680 | DOI | MR
[23] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl