Finite groups whose prime graphs do not contain triangles.~II
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 3-13
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The study of finite groups whose prime graphs do not contain triangles is continued. The main result of the given part of the work is the following theorem: if $G$ is a finite non-solvable group whose prime graph does not contain triangles and $S(G)$ is the greatest solvable normal subgroup in $G$ then $|\pi(G)|\leq 8$ and $|\pi(S(G))|\leq 3$. Furthermore, a detailed description of the structure of a group $G$ satisfying the conditions of the theorem in the case when $\pi(S(G))$ contains a number which does not divide the order of the group $G/S(G)$. It is also constructed an example of a finite solvable group with the Fitting length 5 whose prime graph is 4-cycle. This completes the determination of exact bound for the Fitting length of finite solvable groups whose prime graphs do not contain triangles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, fitting length, prime graph.
Mots-clés : non-solvable group, solvable group
                    
                  
                
                
                Mots-clés : non-solvable group, solvable group
@article{TIMM_2016_22_1_a0,
     author = {O. A. Alekseeva and A. S. Kondrat'ev},
     title = {Finite groups whose prime graphs do not contain {triangles.~II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/}
}
                      
                      
                    TY - JOUR AU - O. A. Alekseeva AU - A. S. Kondrat'ev TI - Finite groups whose prime graphs do not contain triangles.~II JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 3 EP - 13 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/ LA - ru ID - TIMM_2016_22_1_a0 ER -
O. A. Alekseeva; A. S. Kondrat'ev. Finite groups whose prime graphs do not contain triangles.~II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TIMM_2016_22_1_a0/
