A solution class of the Euler equation in a torus with solenoidal velocity field. II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 102-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a problem on solutions $(\mathbf{V},p)$ of the Euler equation with solenoidal velocity field $\mathbf{V}$ in a torus $D$, which is similar to the problem considered in the authors' previous paper 2014. Now, the problem is considered in the class of vector fields $\mathbf{V}$ whose lines coincide with lines of latitude of tori embedded in $D$ with the same circular axis. Conditions are found under which this problem is solvable, and solutions are found too.
Keywords: scalar and vector fields, curl.
Mots-clés : Euler equation, divergence
@article{TIMM_2015_21_4_a9,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {A solution class of the {Euler} equation in a torus with solenoidal velocity field. {II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--108},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a9/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - A solution class of the Euler equation in a torus with solenoidal velocity field. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 102
EP  - 108
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a9/
LA  - ru
ID  - TIMM_2015_21_4_a9
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T A solution class of the Euler equation in a torus with solenoidal velocity field. II
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 102-108
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a9/
%G ru
%F TIMM_2015_21_4_a9
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. A solution class of the Euler equation in a torus with solenoidal velocity field. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 102-108. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a9/

[1] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Odin klass reshenii uravneniya Eilera v tore s solenoidalnym polem skorostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 60–70

[2] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “K mekhanike vintovykh potokov v idealnoi neszhimaemoi nevyazkoi sploshnoi srede”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 120–134

[3] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Postanovka i reshenie kraevoi zadachi v klasse ploskovintovykh vektornykh polei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 123–138 | MR

[4] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Nekotorye resheniya uravnenii dvizheniya dlya neszhimaemoi vyazkoi sploshnoi sredy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 48–63

[5] Vereschagin V.P., Subbotin Yu.N., Chernykh N.I., “Klass vsekh gladkikh edinichnykh aksialno simmetrichnykh vektornykh polei, prodolno vikhrevykh v R3”, Izv. Sarat. un-ta. Ser. “Matematika. Mekhanika. Informatika” 1., 9:4, ch. 1 (2009), 11–23