A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 95-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the motion of an object $t$ in the space ${\mathbb R}^2$, where a bodily bounded bounded set $G$ with piecewise smooth boundary hinders the motion and visibility. In a neighborhood of convex parts of the boundary, there are observers, which can hide from $t$ in a shade set $s(t)\subset {\mathbb R}^2\setminus G$ in the case of danger from $t$. We find characteristic properties of the trajectory $\mathcal T$ of the object that maximizes the value $\min\{\rho(t,s(t)):\ t\in {\mathcal T}\}$.
Mots-clés : navigation, observer.
Keywords: escort problem, moving object
@article{TIMM_2015_21_4_a8,
     author = {V. I. Berdyshev},
     title = {A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {95--101},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a8/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 95
EP  - 101
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a8/
LA  - ru
ID  - TIMM_2015_21_4_a8
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 95-101
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a8/
%G ru
%F TIMM_2015_21_4_a8
V. I. Berdyshev. A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 95-101. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a8/