A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 95-101
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the motion of an object $t$ in the space ${\mathbb R}^2$, where a bodily bounded bounded set $G$ with piecewise smooth boundary hinders the motion and visibility. In a neighborhood of convex parts of the boundary, there are observers, which can hide from $t$ in a shade set $s(t)\subset {\mathbb R}^2\setminus G$ in the case of danger from $t$. We find characteristic properties of the trajectory $\mathcal T$ of the object that maximizes the value $\min\{\rho(t,s(t)):\ t\in {\mathcal T}\}$.
Mots-clés :
navigation, observer.
Keywords: escort problem, moving object
Keywords: escort problem, moving object
@article{TIMM_2015_21_4_a8,
author = {V. I. Berdyshev},
title = {A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {95--101},
year = {2015},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a8/}
}
V. I. Berdyshev. A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 95-101. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a8/