Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 78-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Order-exact bounds are obtained for Fourier widths of the Nikol'skii-Besov classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and Triebel-Lizorkin classes $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ of functions with a given majorant $\Omega$ for the mixed modulus of smoothness of order $l$ in the space $L_q(\mathbb{T}^d)$ for all relations between the parameters $p$, $q$, and $\theta$ under some conditions on $\Omega$. The upper bounds follow from order-exact bounds for approximations of the classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ by special partial sums of Fourier series in the multiple system $\Psi_d$ of periodized Meyer wavelets.
Keywords: fourier width, mixed modulus of smoothness, function spaces, wavelet system.
@article{TIMM_2015_21_4_a7,
     author = {Sh. A. Balgimbaeva and T. I. Smirnov},
     title = {Bounds for {Fourier} widths of classes of periodic functions with a mixed modulus of smoothness},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {78--94},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a7/}
}
TY  - JOUR
AU  - Sh. A. Balgimbaeva
AU  - T. I. Smirnov
TI  - Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 78
EP  - 94
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a7/
LA  - ru
ID  - TIMM_2015_21_4_a7
ER  - 
%0 Journal Article
%A Sh. A. Balgimbaeva
%A T. I. Smirnov
%T Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 78-94
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a7/
%G ru
%F TIMM_2015_21_4_a7
Sh. A. Balgimbaeva; T. I. Smirnov. Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 78-94. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a7/

[1] Temlyakov V.N., “Poperechniki nekotorykh klassov funktsii neskolkikh peremennykh”, Dokl. AN SSSR, 267:3 (1982), 314–317 | MR

[2] Temlyakov V.N., Approximation of periodic functions, Comput. Math. Analysis Ser., Nova Science Publishers, New York, 1993, 419 pp. | MR | Zbl

[3] Andrianov A.V., Temlyakov V.N., “O dvukh metodakh rasprostraneniya svoistv sistem funktsii ot odnoi peremennoi na ikh tenzornoe proizvedenie”, Tr. MIAN, 219 (1997), 32–43 | MR | Zbl

[4] Din Zung, “Priblizhenie funktsii mnogikh peremennykh na tore trigonometricheskimi polinomami”, Mat. sb., 131(173):2(10) (1986), 251–271

[5] Pustovoitov N.N., “Ortopoperechniki nekotorykh klassov periodicheskikh funktsii dvukh peremennykh s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Izv. RAN. Ser. matematicheskaya, 64:1 (2000), 123–144 | DOI | MR | Zbl

[6] Pustovoitov N.N., “Ortopoperechniki klassov mnogomernykh periodicheskikh funktsii, mazhoranta smeshannykh modulei nepreryvnosti kotorykh soderzhit kak stepennye, tak i logarifmicheskie mnozhiteli”, Anal. Math., 34:3 (2008), 187–224 | DOI | MR | Zbl

[7] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Anal. Math., 38:4 (2012), 249–289 | DOI | MR | Zbl

[8] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MIAN, 269 (2010), 8–30 | MR | Zbl

[9] Temlyakov V.N., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Tr. MIAN, 189 (1989), 138–168 | MR

[10] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178 (1986), 3–113 | MR

[11] Lizorkin P.I., Nikolskii S.M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN, 187 (1989), 143–161 | MR

[12] Bari N.K., Stechkin S.B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matematicheskogo obschestva, 5 (1956), 483–522 | MR | Zbl

[13] Pustovoitov N.N., “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 20:1 (1994), 35–48 | DOI | MR

[14] Yongsheng S., Heping W., “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness”, Proc. Steklov Inst. Math., 219 (1997), 350–371 | MR | Zbl

[15] Stasyuk S.A., Fedunyk O.V., “Approximation characteristics of the classes $B_{p,\theta}^\Omega$ of periodic functions of many variables”, Ukr. Math. J., 58:5 (2006), 779–793 | DOI | MR | Zbl

[16] Pustovoitov N.N., “Priblizhenie mnogomernykh funktsii s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Mat. zametki, 65:1 (1999), 107–117 | DOI | MR | Zbl

[17] Meyer Y., Wavelets and operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge Univ. Press, New York; Cambridge, 1992, 223 pp. | MR | Zbl

[18] Stasyuk S.A., “Nailuchshie priblizheniya periodicheskikh funktsii mnogikh peremennykh iz klassov $B_{p\theta}^\Omega$”, Mat. zametki, 87:1 (2010), 108–121 | DOI | MR | Zbl

[19] Stasyuk S.A., “Priblizhenie summami Fure i kolmogorovskie poperechniki klassov $MB_{p\theta}^\Omega$ periodicheskikh funktsii neskolkikh peremennykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 247–257 | MR