Keywords: finite element method, splines on triangulations.
@article{TIMM_2015_21_4_a6,
author = {N. V. Baidakova},
title = {A triangular finite element with new approximation properties},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {67--77},
year = {2015},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a6/}
}
N. V. Baidakova. A triangular finite element with new approximation properties. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 67-77. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a6/
[1] Ciarlet P.G., Raviart P.A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rational Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl
[2] Subbotin Yu.N., “Mnogomernaya kusochno-polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, ed. pod red. A.Yu. Kuznetsova, VTsN, Novosibirsk, 1981, 148–153 | MR
[3] Subbotin Yu.N., “Zavisimost otsenok mnogomernoi kusochno-polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN, 189 (1989), 117–137 | MR
[4] Baidakova N.V., “Vliyanie gladkosti na pogreshnost approksimatsii proizvodnykh pri lokalnoi interpolyatsii na triangulyatsiyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 83–97
[5] J. Brandts, A. Hannukainen, S. Korotov, M. Krizek, “On angle conditions in the finite element method”, SeMA J., 2011, no. 56, 81–95 | DOI | MR | Zbl
[6] Berezin I.S., Zhidkov N.P., Metody vychislenii, 1, Fizmatgiz, M., 1962, 464 pp. | MR