A triangular finite element with new approximation properties
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 67-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A finite element with new properties of approximation of higher derivatives is constructed, and a method for the construction of a finite element space in the planar case is proposed. The method is based on Yu.N. Subbotin's earlier results as well as on the results obtained in this paper. The resulting piecewise polynomial function possesses the continuity property and new approximation properties.
Mots-clés : multidimensional interpolation, maximum angle condition
Keywords: finite element method, splines on triangulations.
@article{TIMM_2015_21_4_a6,
     author = {N. V. Baidakova},
     title = {A triangular finite element with new approximation properties},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--77},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a6/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - A triangular finite element with new approximation properties
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 67
EP  - 77
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a6/
LA  - ru
ID  - TIMM_2015_21_4_a6
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T A triangular finite element with new approximation properties
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 67-77
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a6/
%G ru
%F TIMM_2015_21_4_a6
N. V. Baidakova. A triangular finite element with new approximation properties. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 67-77. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a6/

[1] Ciarlet P.G., Raviart P.A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rational Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[2] Subbotin Yu.N., “Mnogomernaya kusochno-polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, ed. pod red. A.Yu. Kuznetsova, VTsN, Novosibirsk, 1981, 148–153 | MR

[3] Subbotin Yu.N., “Zavisimost otsenok mnogomernoi kusochno-polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN, 189 (1989), 117–137 | MR

[4] Baidakova N.V., “Vliyanie gladkosti na pogreshnost approksimatsii proizvodnykh pri lokalnoi interpolyatsii na triangulyatsiyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 83–97

[5] J. Brandts, A. Hannukainen, S. Korotov, M. Krizek, “On angle conditions in the finite element method”, SeMA J., 2011, no. 56, 81–95 | DOI | MR | Zbl

[6] Berezin I.S., Zhidkov N.P., Metody vychislenii, 1, Fizmatgiz, M., 1962, 464 pp. | MR