Estimates for mean-square norms of functions with lacunary Fourier series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 54-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the properties of functions $f$ from the space $L^2(\mathbb{T})$ on the period $\mathbb{T}=[-\pi,\pi)$ with lacunary Fourier series such that the size of each lack is not less than a given positive integer $q-1$. We find two-sided estimates of the $L^2$ norms of such functions on $\mathbb{T}$ in terms of similar norms (more exactly, seminorms) on intervals $I$ of length $|I|=2h2\pi$. The estimates are obtained in terms of best one-sided integral approximations of the characteristic function of the interval $(-h,h)$ by trigonometric polynomials of order at most $q-1$. The issue considered in this paper appeared first in N. Wiener's studies (1934). Important results in this area were obtained by A.E. Ingham (1936) and by A. Selberg in the 1970s.
Keywords: lacunary trigonometric series, mean-square norms, one-sided approximation of functions by trigonometric polynomials.
@article{TIMM_2015_21_4_a5,
     author = {A. G. Babenko and V. A. Yudin},
     title = {Estimates for mean-square norms of functions with lacunary {Fourier} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {54--66},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a5/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - V. A. Yudin
TI  - Estimates for mean-square norms of functions with lacunary Fourier series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 54
EP  - 66
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a5/
LA  - ru
ID  - TIMM_2015_21_4_a5
ER  - 
%0 Journal Article
%A A. G. Babenko
%A V. A. Yudin
%T Estimates for mean-square norms of functions with lacunary Fourier series
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 54-66
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a5/
%G ru
%F TIMM_2015_21_4_a5
A. G. Babenko; V. A. Yudin. Estimates for mean-square norms of functions with lacunary Fourier series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 54-66. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a5/

[1] Babenko A.G., “Ob odnoi ekstremalnoi zadache dlya polinomov”, Mat. zametki, 35:3 (1984), 349–356 | MR | Zbl

[2] Babenko A.G., Kryakin Yu.V., Yudin V.A., “Odnostoronnee priblizhenie v $L$ kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 82–95

[3] Zigmund A., Trigonometricheskie ryady, per. s angl., v. 1, ed. pod red. N.K. Bari, Mir, M., 1965, 616 pp. | MR

[4] Polia G., Segë G., Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978, 432 pp.

[5] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 336 pp.

[6] Boas R.P., Kac M., “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12 (1945), 189–206 | DOI | MR | Zbl

[7] Donoho D.L., Logan B.F., “Signal recovery and the large sieve”, SIAM J. Appl. Math., 52:2 (1992), 577–591 | DOI | MR | Zbl

[8] Erdos P., Turan P., “On a problem in the theory of uniform distribution”, Nederl. Akad. Wetensch. Proc., 51:I, II (1948), 1146-1154,1262-1269 | MR | Zbl

[9] Fejer L., “Sur les polyn $\hat{\rm{o}}$ mes harmoniques quelconques, Gesammelte Arbeiten”, Hrsg. und Komment. P. Turan., v. 1, Akademiai Kiado, Budapest, 1970, 770–773

[10] Fejer L., “Uber trigonometrische Polynome, Gesammelte Arbeiten”, Hrsg. und Komment. P. Turan, v. 1, Akademiai Kiado, Budapest, 1970, 842–872

[11] Ingham A.E., “Some trigonometrical inequalities with applications to the theory of series”, Math. Z., 41:1 (1936), 367–379 | DOI | MR

[12] Li X.-J., Vaaler J.D., “Some trigonometric extremal functions and the Erdos-Turan type inequalities”, Indiana Univ. Math. J., 48:1 (1999), 183–236 | MR | Zbl

[13] Littmann F., “Quadrature and extremal bandlimited functions”, SIAM J. Math. Anal., 45:2 (2013), 732–747 | DOI | MR | Zbl

[14] Montgomery H.L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Ser. Math., 84, Amer. Math. Soc. Providence, Washington, 1994, 220 pp. | DOI | MR | Zbl

[15] Montgomery H.L., “Harmonic analysis as found in analytic number theory”, Twentieth century harmonic analysis-a celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001, 271–293 | MR | Zbl

[16] Selberg A., Collected papers, 2, Springer-Verlag, Berlin, 1991, 253 pp. | MR

[17] Vaaler J.D., “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (New Series), 12:2 (1985), 183–216 | DOI | MR | Zbl

[18] Wiener N., “A class of gap theorems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 3:3 (1934), 367–372 | MR