Weighted one-sided approximation of characteristic functions of intervals by polynomials on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 46-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of weighted one-sided approximation on the interval $[-1,1]$ of characteristic functions of intervals $(a,1]\subset(-1,1]$ and $(a,b)\subset(-1,1)$ by algebraic polynomials. In the case of half-intervals, the problem is solved completely. We construct an example to illustrate difficulties arising in the case of an open interval.
Keywords: one-sided approximation, characteristic function, polynomials.
@article{TIMM_2015_21_4_a4,
     author = {A. G. Babenko and M. V. Deikalova and S. G. Revesz},
     title = {Weighted one-sided approximation of characteristic functions of intervals by polynomials on a closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {46--53},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a4/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - M. V. Deikalova
AU  - S. G. Revesz
TI  - Weighted one-sided approximation of characteristic functions of intervals by polynomials on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 46
EP  - 53
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a4/
LA  - ru
ID  - TIMM_2015_21_4_a4
ER  - 
%0 Journal Article
%A A. G. Babenko
%A M. V. Deikalova
%A S. G. Revesz
%T Weighted one-sided approximation of characteristic functions of intervals by polynomials on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 46-53
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a4/
%G ru
%F TIMM_2015_21_4_a4
A. G. Babenko; M. V. Deikalova; S. G. Revesz. Weighted one-sided approximation of characteristic functions of intervals by polynomials on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 46-53. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a4/

[1] Babenko A.G., Kryakin Yu.V., Yudin V.A., “Odnostoronnee priblizhenie v $L$ kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 82–95

[2] Berezin I.S., Zhidkov N.P., Metody vychislenii, ucheb. posob.: v 2 t. 2-e izd., stereotip., v. 1,2, Fizmatgiz, M., 1962, 464,639 pp. | MR

[3] Krylov V.I., Priblizhennoe vychislenie integralov, Fizmatlit, M., 1959, 327 pp. | MR

[4] Markov A.A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M.; L., 1948, 411 pp. | MR

[5] Postnikov A.G., Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971, 416 pp. | MR

[6] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[7] Bojanic R., DeVore R., “On polynomials of best one-sided approximation”, Enseign. Math., 2:12 (1966), 139–164 | MR | Zbl

[8] Bustamante J., Marti nez-Cruz R., Quesada J.M., “Quasi orthogonal Jacobi polynomials and best one-sided $L_1$ approximation to step functions”, J. Approx. Theory, 198 (2015), 10–23 | DOI | MR | Zbl

[9] Bultheel A., Cruz-Barroso R., Van Barel M., “On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line”, Calcolo, 47:1 (2010), 21–48 | DOI | MR | Zbl

[10] B. Beckermann, J. Bustamante, R. Martinez-Cruz, J.M. Quesada, “Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa”, Calcolo, 51:2 (2014), 319–328 | DOI | MR | Zbl

[11] Li X.-J., Vaaler J.D., “Some trigonometric extremal functions and the Erdos-Turan type inequalities”, Ind. Univ. Math. J., 48:1 (1999), 183–236 | MR | Zbl

[12] Peherstorfer F., “Positive quadrature formulas III: asymptotics of weights”, Math. Comput., 77:264 (2008), 2241–2259 | DOI | MR | Zbl

[13] Stieltjes T.J., “Quelques recherches sur la theorie des quadratures dites mechaniques”, Annales Sc. de l'Ecole Norm. Super., 1:3 (1884), 409–426 | MR