On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 30-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let a sequence of $d$-dimensional vectors $\mathbf{n}_k=(n_k^1, n_k^2,\ldots,n_k^d)$ with positive integer coordinates satisfy the condition $n_k^j=\alpha_j m_k+O(1), \ k \in {\mathbb N}, \ 1 \le j \le d,$\; where $\alpha _1>0,$ $\ldots,\alpha _d>0,$ and $\{ m_k \} _{k=1}^{\infty }$ is an increasing sequence of positive integers. Under some conditions on a function $\varphi :[0,+\infty ) \to [0,+\infty )$, it is proved that, if the sequence of Fourier sums $S_{m_k}(g,x)$ converges almost everywhere for any function $g \in \varphi (L) ([0 , 2\pi ))$, then, for any $d \in {\mathbb N}$ and $f \in \varphi (L)(\ln ^+L)^{d-1}([0 , 2\pi ) ^d) $, the sequence $ S_{\mathbf {n}_k} (f,\mathbf x)$ of rectangular partial sums of the multiple trigonometric Fourier series of the function $f$ and the corresponding sequences of partial sums of all conjugate series converge almost everywhere.
Keywords: multiple trigonometric fourier series, convergence almost everywhere.
@article{TIMM_2015_21_4_a3,
     author = {N. Yu. Antonov},
     title = {On almost everywhere convergence for lacunary sequences of multiple rectangular {Fourier} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--45},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 30
EP  - 45
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/
LA  - ru
ID  - TIMM_2015_21_4_a3
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 30-45
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/
%G ru
%F TIMM_2015_21_4_a3
N. Yu. Antonov. On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 30-45. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/

[1] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta math., 116:1-2 (1966), 135–157 | DOI | MR | Zbl

[2] Hunt R.A., “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues, SIU Press, Carbondale, 1968, 235–255 | MR

[3] Sjolin P., “An inequality of Paley and convergence a.e. of Walsh-Fourier series”, Arkiv for mat., 7 (1969), 551–570 | DOI | MR | Zbl

[4] Antonov N.Yu., “Convergence of Fourier series”, East J. Approx., 2:2 (1996), 187–196 | MR | Zbl

[5] Konyagin S.V., “O raskhodimosti vsyudu trigonometricheskikh ryadov Fure”, Mat. sb., 191:1 (2000), 103–126 | DOI | MR | Zbl

[6] Konyagin S.V., “O raskhodimosti vsyudu podposledovatelnostei chastnykh summ trigonometricheskikh ryadov Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11:2 (2005), 112–119 | Zbl

[7] Lie V., “On the pointwise convergence of the sequences of partial Fourier sums along lacunary subsequences”, J. Funct. Anal., 263 (2012), 3391–3411 | DOI | MR | Zbl

[8] Di Plinio F., “Lacunary Fourier and Walsh-Fourier series near $L^1$”, Collect. Math., 65:2 (2014), 219–232 | DOI | MR | Zbl

[9] Tevzadze N.R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN GSSR, 58:2 (1970), 277–279 | MR | Zbl

[10] Fefferman C., “On the convergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:5 (1971), 744–745 | DOI | MR | Zbl

[11] Sjolin P., “Convergence almost everywhere of sertain singular integrals and multiple Fourier series”, Arkiv for mat., 9:1 (1971), 65–90 | DOI | MR | Zbl

[12] Antonov N.Yu., “O skhodimosti pochti vsyudu po kubam kratnykh trigonometricheskikh ryadov Fure”, Izv. RAN. Ser. matematicheskaya, 68:2 (2004), 3–22 | DOI | MR | Zbl

[13] Konyagin S.V., “On divergence of trigonometric Fourier series over cubes”, Acta Sci. Math. (Szeged), 61:1-4 (1995), 305–329 | MR | Zbl

[14] Antonov N.Yu., “O skhodimosti pochti vsyudu posledovatelnostei kratnykh pryamougolnykh summ Fure”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:3 (2008), 3–18

[15] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, M., 1999, 560 pp. | MR

[16] Stein E.M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170 | DOI | MR | Zbl

[17] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965, 538 pp. | MR