On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 30-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let a sequence of $d$-dimensional vectors $\mathbf{n}_k=(n_k^1, n_k^2,\ldots,n_k^d)$ with positive integer coordinates satisfy the condition $n_k^j=\alpha_j m_k+O(1), \ k \in {\mathbb N}, \ 1 \le j \le d,$\; where $\alpha _1>0,$ $\ldots,\alpha _d>0,$ and $\{ m_k \} _{k=1}^{\infty }$ is an increasing sequence of positive integers. Under some conditions on a function $\varphi :[0,+\infty ) \to [0,+\infty )$, it is proved that, if the sequence of Fourier sums $S_{m_k}(g,x)$ converges almost everywhere for any function $g \in \varphi (L) ([0 , 2\pi ))$, then, for any $d \in {\mathbb  N}$ and $f \in \varphi (L)(\ln ^+L)^{d-1}([0 , 2\pi ) ^d) $, the sequence $ S_{\mathbf {n}_k} (f,\mathbf x)$ of rectangular partial sums of the multiple trigonometric Fourier series of the function $f$ and the corresponding sequences of partial sums of all conjugate series converge almost everywhere.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
multiple trigonometric fourier series, convergence almost everywhere.
                    
                  
                
                
                @article{TIMM_2015_21_4_a3,
     author = {N. Yu. Antonov},
     title = {On almost everywhere convergence for lacunary sequences of multiple rectangular {Fourier} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--45},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/}
}
                      
                      
                    TY - JOUR AU - N. Yu. Antonov TI - On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 30 EP - 45 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/ LA - ru ID - TIMM_2015_21_4_a3 ER -
N. Yu. Antonov. On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 30-45. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/
