On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 30-45

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a sequence of $d$-dimensional vectors $\mathbf{n}_k=(n_k^1, n_k^2,\ldots,n_k^d)$ with positive integer coordinates satisfy the condition $n_k^j=\alpha_j m_k+O(1), \ k \in {\mathbb N}, \ 1 \le j \le d,$\; where $\alpha _1>0,$ $\ldots,\alpha _d>0,$ and $\{ m_k \} _{k=1}^{\infty }$ is an increasing sequence of positive integers. Under some conditions on a function $\varphi :[0,+\infty ) \to [0,+\infty )$, it is proved that, if the sequence of Fourier sums $S_{m_k}(g,x)$ converges almost everywhere for any function $g \in \varphi (L) ([0 , 2\pi ))$, then, for any $d \in {\mathbb N}$ and $f \in \varphi (L)(\ln ^+L)^{d-1}([0 , 2\pi ) ^d) $, the sequence $ S_{\mathbf {n}_k} (f,\mathbf x)$ of rectangular partial sums of the multiple trigonometric Fourier series of the function $f$ and the corresponding sequences of partial sums of all conjugate series converge almost everywhere.
Keywords: multiple trigonometric fourier series, convergence almost everywhere.
@article{TIMM_2015_21_4_a3,
     author = {N. Yu. Antonov},
     title = {On almost everywhere convergence for lacunary sequences of multiple rectangular {Fourier} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {30--45},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/}
}
TY  - JOUR
AU  - N. Yu. Antonov
TI  - On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 30
EP  - 45
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/
LA  - ru
ID  - TIMM_2015_21_4_a3
ER  - 
%0 Journal Article
%A N. Yu. Antonov
%T On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 30-45
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/
%G ru
%F TIMM_2015_21_4_a3
N. Yu. Antonov. On almost everywhere convergence for lacunary sequences of multiple rectangular Fourier sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 30-45. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a3/