Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 309-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Upper bounds for Lebesgue constants (norms of linear operators from $C$ to $C$) of interpolational periodic sourcewise representable splines with uniform knots are obtained for a wide class of periodic integrable kernels $K$.
Mots-clés : Lebesgue constants, sourcewise representable splines
Keywords: uniform knots.
@article{TIMM_2015_21_4_a28,
     author = {V. T. Shevaldin and O. Ya. Shevaldina},
     title = {Upper bounds for uniform {Lebesgue} constants of interpolational periodic sourcewise representable splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {309--315},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/}
}
TY  - JOUR
AU  - V. T. Shevaldin
AU  - O. Ya. Shevaldina
TI  - Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 309
EP  - 315
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/
LA  - ru
ID  - TIMM_2015_21_4_a28
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%A O. Ya. Shevaldina
%T Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 309-315
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/
%G ru
%F TIMM_2015_21_4_a28
V. T. Shevaldin; O. Ya. Shevaldina. Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 309-315. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/

[1] Shevaldin V.T., Istokoobraznye splainy i poperechniki klassov periodicheskikh funktsii, dis.. d-ra fiz.-mat. nauk, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 1996, 193 pp.

[2] Korneichuk N.P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR

[3] Stepanets A.I., Metody teorii priblizhenii, v 2 ch., v. 1, 2, In-t matematiki NAN Ukrainy, Kiev, 2002, 427,468 pp.

[4] Shevaldin V.T., “Otsenki snizu poperechnikov klassov istokoobrazno predstavimykh funktsii”, Tr. MIAN, 189 (1989), 185–201 | MR

[5] Alberg Dzh., Nilson., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 320 pp. | MR

[6] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42 | MR | Zbl

[7] Kushpel A.K., “Tochnye otsenki poperechnikov klassov svertok”, Izv. RAN. Ser. matematicheskaya, 52:6 (1988), 1305–1322 | MR

[8] Richards F., “Best bounds for the uniform periodic spline interpolation operator”, J. Approx. Theory, 7:3 (1973), 302–317 | DOI | MR | Zbl

[9] Zhensykbaev A.A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh funktsii splainami $r$-go poryadka”, Mat. zametki, 13:2 (1973), 217–228

[10] Subbotin Yu.N., Telyakovskii S.A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. sb., 191:8 (2000), 131–140 | DOI | MR | Zbl

[11] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\mathcal L$-splainov formalno samosopryazhennogo differentsialnogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 169–177

[12] Stepanets A.I., Serdyuk A.S., “O suschestvovanii interpolyatsionnykh $SK$-splainov”, Ukr. mat. zhurn., 46:11 (1994), 1546–1553 | MR | Zbl

[13] Serdyuk A.S., Bodenchuk V.V., “Exact values of Kolmogorov widths of classes of Poisson integrals”, J. Approx. Theory, 173:1 (2013), 89–109 | DOI | MR | Zbl

[14] Pinkus A., “On $n$-widths of periodic functions”, J. Anal. Math., 35 (1979), 209–235 | DOI | MR | Zbl

[15] ter Morsche H.G., “On the Lebesque constants for cardinal $\mathcal L$-spline interpolation”, J. Approx. Theory, 45:3 (1985), 232–246 | DOI | MR | Zbl

[16] Tzimbalario J., “Lebesgue constants for cardinal $\mathcal L$-spline interpolation”, Can. J. Math., 29:2 (1977), 441–448 | DOI | MR | Zbl

[17] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $\mathcal L$-splainov tretego poryadka”, Sib. mat. zhurn., 51:2 (2010), 330–341 | MR

[18] Nguen Tkhi Tkheu Khoa, Ekstremalnye zadachi na nekotorykh klassakh gladkikh periodicheskikh funktsii, dis. d-ra fiz.-mat. nauk, MIAN im. V.A. Steklova, M., 1994, 219 pp.