Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 309-315

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper bounds for Lebesgue constants (norms of linear operators from $C$ to $C$) of interpolational periodic sourcewise representable splines with uniform knots are obtained for a wide class of periodic integrable kernels $K$.
Mots-clés : Lebesgue constants, sourcewise representable splines
Keywords: uniform knots.
@article{TIMM_2015_21_4_a28,
     author = {V. T. Shevaldin and O. Ya. Shevaldina},
     title = {Upper bounds for uniform {Lebesgue} constants of interpolational periodic sourcewise representable splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {309--315},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/}
}
TY  - JOUR
AU  - V. T. Shevaldin
AU  - O. Ya. Shevaldina
TI  - Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 309
EP  - 315
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/
LA  - ru
ID  - TIMM_2015_21_4_a28
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%A O. Ya. Shevaldina
%T Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 309-315
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/
%G ru
%F TIMM_2015_21_4_a28
V. T. Shevaldin; O. Ya. Shevaldina. Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 309-315. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a28/