Jackson — Stechkin type inequalities with generalized moduli of continuity and widths of some classes of functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 292-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the Hilbert space $L_{2,\mu}[-1,1]$ with Chebyshev weight $\mu(x):=1/\sqrt{1-x^{2}}$, we obtain Jackson–Stechkin type inequalities between the value $E_{n-1}(f)_{L_{2,\mu}}$ of the best approximation of a function $f(x)$ by algebraic polynomials of degree at most $n-1$ and the $m$th-order generalized modulus of continuity $\Omega_{m}({\mathcal D}^{r}f;t)$, where ${\mathcal D}$ is some second-order differential operator. For classes of functions $W^{(2r)}_{p,m}(\Psi)$ ($m,r\in\mathbb{N}$, $1/(2r)$$p\le2$) defined by the mentioned modulus of continuity and a given majorant $\Psi(t)$ ($t\ge0$), which satisfies certain constraints, we calculate the values of various $n$-widths in the space $L_{2,\mu}[-1,1]$.
Keywords: best approximation, Chebyshev polynomials, generalized modulus of continuity of $m$th order, $n$-widths.
Mots-clés : Chebyshev — Fourier coefficients
@article{TIMM_2015_21_4_a27,
     author = {M. Sh. Shabozov and K.Tukhliev},
     title = {Jackson {\textemdash} {Stechkin} type inequalities with generalized moduli of continuity and widths of some classes of functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {292--308},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a27/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - K.Tukhliev
TI  - Jackson — Stechkin type inequalities with generalized moduli of continuity and widths of some classes of functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 292
EP  - 308
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a27/
LA  - ru
ID  - TIMM_2015_21_4_a27
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A K.Tukhliev
%T Jackson — Stechkin type inequalities with generalized moduli of continuity and widths of some classes of functions
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 292-308
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a27/
%G ru
%F TIMM_2015_21_4_a27
M. Sh. Shabozov; K.Tukhliev. Jackson — Stechkin type inequalities with generalized moduli of continuity and widths of some classes of functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 292-308. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a27/

[1] Chernykh N.I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_{2}$”, Mat. zametki, 2:5 (1967), 513–522

[2] Taikov L.V., “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_{2}$”, Mat. zametki, 20:3 (1976), 433–438 | MR | Zbl

[3] Taikov L.V., “Strukturnye i konstruktivnye kharakteristiki funktsii iz $L_{2}$”, Mat. zametki, 25:2 (1979), 217–223 | MR | Zbl

[4] Ligun A.A., “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_{2}$”, Mat. zametki, 24:6 (1978), 785–792 | MR | Zbl

[5] Babenko A.G., “O tochnoi konstante v neravenstve Dzheksona v $L^2$”, Mat. zametki, 39:5 (1986), 651–664 | MR | Zbl

[6] Shalaev V.V., “O poperechnikakh v $L_{2}$ klassov differentsiruemykh funktsii, opredelyaemykh modulyami nepreryvnosti vysshikh poryadkov”, Ukr. mat. zhurn., 43:1 (1991), 125–129 | MR | Zbl

[7] Babenko A.G., Chernykh N.I., Shevaldin V.T., “Neravenstva Dzheksona - Stechkina v $L_2$ s trigonometricheskim modulem nepreryvnosti”, Mat. zametki, 65:6 (1999), 928–932 | DOI | MR | Zbl

[8] Vakarchuk S.B., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_{2}$”, Mat. zametki, 78:5 (2005), 792–796 | DOI | MR | Zbl

[9] Vakarchuk S.B., Zabutnaya V.I., “Neravenstva tipa Dzheksona - Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Mat. zametki, 92:4 (2012), 497–514 | DOI | MR | Zbl

[10] Ivanov V.I., Smirnov O.I., Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_{p}$, Izd-vo TulGU, Tula, 1995, 192 pp.

[11] Esmaganbetov M.G., “Poperechniki klassov iz $L_{2}[0,2\pi]$ i minimizatsiya tochnykh konstant v neravenstvakh tipa Dzheksona”, Mat. zametki, 65:6 (1999), 816–820 | DOI | MR | Zbl

[12] Yudin V.A., “K teoremam Dzheksona v $L_2$”, Mat. zametki, 41:1 (1987), 43–47 | MR

[13] Shabozov M.Sh., “Poperechniki nekotorykh klassov periodicheskikh differentsiruemykh funktsii v prostranstve $L_{2}[0,2\pi]$”, Mat. zametki, 87:4 (2010), 616–623 | DOI | MR | Zbl

[14] Shabozov M.Sh., Yusupov G.A., “Nailuchshie polinomialnye priblizheniya v $L_{2}$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnye znacheniya ikh poperechnikov”, Mat. zametki, 90:5 (2011), 764–775 | DOI | MR | Zbl

[15] Babenko A.G., “Tochnoe neravenstvo Dzheksona - Stechkina v prostranstve $L^{2}$-priblizhenii na otrezke s vesom Yakobi i proektivnykh prostranstvakh”, Izv. RAN. Seriya matematicheskaya, 62:6 (1998), 27–52 | DOI | MR | Zbl

[16] Chertova D.V., “Teoremy Dzheksona v prostranstvakh $L_{p}, 1\le p\le2,$ s periodicheskim vesom Yakobi”, Izv. TulGU. Estest. nauki, 2009, no. 1, 5–27 | MR

[17] Kuk Vo Tkhi, “Operatory obobschennogo sdviga v prostranstvakh $L_{p}$ na tore s vesom Yakobi i ikh primenenie”, Izv. TulGU. Estest. nauki, 2012, no. 1, 17–43 | MR

[18] Ivanov A.V., Ivanov V.I., “Teoriya Danklya i teorema Dzheksona v prostranstve $L_{2}(\mathbb{R}^{d})$ so stepennym vesom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 180–192

[19] Ivanov A.V., Ivanov V.I., “Optimalnye argumenty v neravenstve Dzheksona v prostranstve $L_{2}(\mathbb{R}^{d})$ so stepennym vesom”, Mat. zametki, 94:3 (2013), 338–348 | DOI | MR | Zbl

[20] Vakarchuk S.B., “O neravenstvakh tipa Dzheksona v $L_{2}$ i tochnykh znacheniyakh $n$-poperechnikov funktsionalnykh klassov”, Ukr. mat. visnik, 3:1 (2006), 116–133 | MR | Zbl

[21] Abilov V.A., Abilova F.V., “Ob odnoi kvadraturnoi formule”, Zhurn. vychisl. matematiki i mat. fiziki, 42:4 (2002), 451–458 | MR | Zbl

[22] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 416 pp. | MR

[23] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969, 480 pp. | MR

[24] Tukhliev K., “O verkhnikh granyakh otkloneniya nekotorykh klassov funktsii ot ikh chastichnykh summ ryadov Fure - Chebyshëva v prostranstve $L_{2}$”, Dokl. AN RT, 56:8 (2013), 606–611

[25] Shabozov M.Sh., Tukhliev K., “${\cal K}$-funktsionaly i tochnye znacheniya $n$-poperechnikov nekotorykh klassov funktsii v prostranstve $L_{2}\big((1-x^2)^{-1/2};[-1,1]\big)$”, Izv. TulGU, 2014, no. 1, Ch. 1, 83–97

[26] Pinkus A., $n$-Widths in approximation theory, Springer-Verlag, Berlin, 1985, 252 pp. | MR | Zbl

[27] V.F. Babenko, N.P. Korneichuk, V.A. Kafanov, S.A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003, 590 pp.

[28] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat nauk, 51:6 (312) (1996), 89–124 | DOI | MR | Zbl

[29] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 325 pp. | MR