Almost Lie nilpotent non-prime varieties of associative algebras
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 282-291

Voir la notice de l'article provenant de la source Math-Net.Ru

A variety of associative algebras is called Lie nilpotent if it satisfies the identity $[\cdots[[x_1,x_2],\ldots,x_n]=0$ for some positive integer $n$, where $[x,y] = xy-yx$. We study almost Lie nilpotent varieties, i.e., minimal elements in the set of all varieties that are not Lie nilpotent. We describe all almost Lie nilpotent varieties of algebras over a field of positive characteristic, both finite and infinite, in the cases when the ideals of identities of these varieties are nonprime in the class of all $T$-ideals.
Keywords: variety of associative algebras, identities of the associated Lie algebra, Lie nilpotency, Engel property.
@article{TIMM_2015_21_4_a26,
     author = {O. B. Finogenova},
     title = {Almost {Lie} nilpotent non-prime varieties of associative algebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {282--291},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/}
}
TY  - JOUR
AU  - O. B. Finogenova
TI  - Almost Lie nilpotent non-prime varieties of associative algebras
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 282
EP  - 291
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/
LA  - ru
ID  - TIMM_2015_21_4_a26
ER  - 
%0 Journal Article
%A O. B. Finogenova
%T Almost Lie nilpotent non-prime varieties of associative algebras
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 282-291
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/
%G ru
%F TIMM_2015_21_4_a26
O. B. Finogenova. Almost Lie nilpotent non-prime varieties of associative algebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 282-291. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/