Almost Lie nilpotent non-prime varieties of associative algebras
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 282-291 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A variety of associative algebras is called Lie nilpotent if it satisfies the identity $[\cdots[[x_1,x_2],\ldots,x_n]=0$ for some positive integer $n$, where $[x,y] = xy-yx$. We study almost Lie nilpotent varieties, i.e., minimal elements in the set of all varieties that are not Lie nilpotent. We describe all almost Lie nilpotent varieties of algebras over a field of positive characteristic, both finite and infinite, in the cases when the ideals of identities of these varieties are nonprime in the class of all $T$-ideals.
Keywords: variety of associative algebras, identities of the associated Lie algebra, Lie nilpotency, Engel property.
@article{TIMM_2015_21_4_a26,
     author = {O. B. Finogenova},
     title = {Almost {Lie} nilpotent non-prime varieties of associative algebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {282--291},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/}
}
TY  - JOUR
AU  - O. B. Finogenova
TI  - Almost Lie nilpotent non-prime varieties of associative algebras
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 282
EP  - 291
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/
LA  - ru
ID  - TIMM_2015_21_4_a26
ER  - 
%0 Journal Article
%A O. B. Finogenova
%T Almost Lie nilpotent non-prime varieties of associative algebras
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 282-291
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/
%G ru
%F TIMM_2015_21_4_a26
O. B. Finogenova. Almost Lie nilpotent non-prime varieties of associative algebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 282-291. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a26/

[1] Zelmanov E.I., “Ob engelevykh algebrakh Li”, Sib. mat. zhurn, 29:5 (1988), 112–117 | MR | Zbl

[2] Zelmanov E.I., “Reshenie oslablennoi problemy Bernsaida dlya grupp nechetnogo pokazatelya”, Izv. AN SSSR. Ser. matematicheskaya, 54:1 (1990), 42–59 | MR | Zbl

[3] Zelmanov E.I., “Reshenie oslablennoi problemy Bernsaida dlya 2-grupp”, Mat. sb., 182:4 (1991), 568–592 | MR | Zbl

[4] Kemer A.R., “O nematrichnykh mnogoobraziyakh”, Algebra i logika, 19:3 (1980), 255–283 | MR

[5] Kostrikin A.I., Vokrug Bernsaida, Nauka, M., 1986, 232 pp. | MR

[6] Kublanovskii S.I., “O mnogoobraziyakh assotsiativnykh algebr s lokalnymi usloviyami konechnosti”, Algebra i analiz, 9:4 (1997), 119–174 | MR

[7] Maltsev Yu.N., “O mnogoobraziyakh assotsiativnykh algebr”, Algebra i logika, 15:5 (1976), 579–584 | MR | Zbl

[8] Maltsev Yu. N., “Pochti engelevy lokalno konechnye mnogoobraziya assotsiativnykh kolets”, Izv. vuzov. Matematika, 1982, no. 11, 41–42. | MR | Zbl

[9] Finogenova O.B., “Mnogoobraziya assotsiativnykh algebr, udovletvoryayuschie tozhdestvam Engelya”, Algebra i logika, 43:4 (2004), 482–505 | MR | Zbl

[10] Finogenova O.B., “Pochti lievo razreshimye mnogoobraziya assotsiativnykh algebr konechnogo bazisnogo ranga”, Sib. elektron. mat. izv., 12 (2015), 1–6

[11] Higgins P.J., “Lie rings satisfying the Engel condition”, Proc. Cambr. Philos. Soc., 50:1 (1954), 8–15 | DOI | MR | Zbl

[12] Mal'cev Yu. N., “Just non commutative varieties of operator algebras and rings with some conditions on nilpotent elements”, Tamkang J. Math., 27:1 (1996), 59–65 | MR | Zbl