Uniform approximation of curvature for smooth classes of plane curves
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 273-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider problems of approximation of the curvature for certain smooth classes of plane curves by the curvature of elements of smooth finite-dimensional function spaces (trigonometric polynomials, splines with equidistant knots) in the uniform norm.
Keywords: curvature, uniform approximation, classes of smooth functions, trigonometric polynomials, splines with equidistant knots, estimates of approximation error.
@article{TIMM_2015_21_4_a24,
     author = {Yu. N. Subbotin},
     title = {Uniform approximation of curvature for smooth classes of plane curves},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {273--276},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a24/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - Uniform approximation of curvature for smooth classes of plane curves
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 273
EP  - 276
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a24/
LA  - ru
ID  - TIMM_2015_21_4_a24
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T Uniform approximation of curvature for smooth classes of plane curves
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 273-276
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a24/
%G ru
%F TIMM_2015_21_4_a24
Yu. N. Subbotin. Uniform approximation of curvature for smooth classes of plane curves. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 273-276. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a24/

[1] Kolmogorov A.N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Uch. zap. MGU, 30 (1939), 3–16

[2] Gabushin V.N., Zhiltsova O.Yu., “Otsenka krivizny razlichnykh klassov krivykh”, Problemy fiziko-matematicheskogo obrazovaniya v pedagogicheskikh vuzakh na sovremennom etape, tez. dokl., Magnitogorsk, 1996, 90

[3] Gabushin V.N., “Otsenki nekotorykh nelineinykh funktsionalov”, Izv. TulGU. Ser. Matematika, mekhanika, informatika, 12:1 (2006), 67–73 | MR

[4] Subbotin Yu.N., “Approksimatsiya krivizny gladkikh klassov ploskikh krivykh elementami konechnomernykh podprostranstv”, Izv. TulGU. Estestvennye nauki, 2012, no. 3, 41–47 | MR

[5] Tikhomirov V.M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi mat. nauk, 15:3 (93) (1960), 81–120 | MR | Zbl

[6] V.V. Arestov, V.I. Berdyshev, N.I. Chernykh, T.V. Demina, N.N. Kholschevnikova, S.V. Konyagin, Yu.N. Subbotin, S.A. Telyakovskii, I.G. Tsar'kov, V.A. Yudin, “Exposition of the lectures by S.B.Stechkin on approximation theory”, Eurasian Math., 2:4 (2011), 5–155 | MR | Zbl

[7] Bohr H., “Un theoreme generale sur l'integration d'un polinome trigonometric”, C.R. Acad. Sci. Paris, 200 (1935), 1276–1277

[8] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 407 pp. | MR