On uniform Lebesgue constants of local exponential splines with equidistant knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 261-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a linear differential operator $\mathcal {L}_r$ of arbitrary order $r$ with constant coefficients and real pairwise different roots of the characteristic polynomial, we study Lebesgue constants (the norms of linear operators from $C$ to $C$) of local exponential splines corresponding to this operator with a uniform arrangement of knots; such splines were constructed by the authors in earlier papers. In particular, for the third-order operator $\mathcal {L}_3=D(D^2-\beta^2)$ ($\beta>0$), we find the exact values of Lebesgue constants for two types of local splines and compare these values with Lebesgue constants of exponential interpolation splines.
Mots-clés : Lebesgue constants
Keywords: exponential splines, linear differential operator.
@article{TIMM_2015_21_4_a23,
     author = {E. V. Strelkova and V. T. Shevaldin},
     title = {On uniform {Lebesgue} constants of local exponential splines with equidistant knots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {261--272},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a23/}
}
TY  - JOUR
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - On uniform Lebesgue constants of local exponential splines with equidistant knots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 261
EP  - 272
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a23/
LA  - ru
ID  - TIMM_2015_21_4_a23
ER  - 
%0 Journal Article
%A E. V. Strelkova
%A V. T. Shevaldin
%T On uniform Lebesgue constants of local exponential splines with equidistant knots
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 261-272
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a23/
%G ru
%F TIMM_2015_21_4_a23
E. V. Strelkova; V. T. Shevaldin. On uniform Lebesgue constants of local exponential splines with equidistant knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 261-272. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a23/

[1] Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[2] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN, 164 (1983), 203–240 | MR | Zbl

[3] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 316 pp. | MR

[4] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN, 78 (1965), 24–42 | MR | Zbl

[5] Micchelli C.A., “Cardinal $\cal L$-splines”, Studies in Splines and Approximation Theory, Acad. Press, New-York, etc., 1976, 203–250 | MR

[6] Schoenberg I.J., “On Micchelli's theory of cardinal $\cal L$-splines”, Studies in Splines and Approximation Theory, Acad. Press, New-York, etc., 1976, 251–276 | MR

[7] Shevaldin V.T., “$\cal L$-splainy i poperechniki”, Mat. zametki, 33:5 (1982), 735–744 | MR

[8] Novikov S.I., “Priblizhenie odnogo klassa differentsiruemykh funktsii $\cal L$-splainami”, Mat. zametki, 33:3 (1983), 393–408 | MR | Zbl

[9] Schurer F., Cheney E.W., “On interpolation cubic splines with equally-spaced nodes”, Proc. Nederlande Acad. van Wetenschappen, 71:5 (1968), 517–524 | MR | Zbl

[10] Zhensykbaev A.A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh funktsii splainami $r$-go poryadka”, Mat. zametki, 13:2 (1973), 217–228

[11] Richards F., “The Lebesque constants for cardinal spline interpolation”, J. Approx. Theory, 14:2 (1975), 83–92 | DOI | MR | Zbl

[12] Subbotin Yu.N., Telyakovskii S.A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. sb., 191:8 (2000), 131–140 | DOI | MR | Zbl

[13] Subbotin Yu.N., Telyakovskii S.A., “Normy v $L$-periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. zametki, 74:1 (2003), 108–117 | DOI | MR | Zbl

[14] Tzimbalario J., “Lebesque constants for cardinal $\cal L$-spline interpolation”, Can. J. Math., 29:2 (1977), 441–448 | DOI | MR | Zbl

[15] Morsche H.G. ter, “On the Lebesque constants for cardinal $\cal L$-spline interpolation”, J. Approx. Theory, 45:3 (1985), 232–246 | DOI | MR | Zbl

[16] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\cal L$-splainov tretego poryadka”, Mat. zametki, 84:1 (2008), 59–68 | DOI | MR | Zbl

[17] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $\cal L$-splainov tretego poryadka”, Sib. mat. zhurn., 51:2 (2010), 330–341 | MR

[18] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\cal L$-splainov formalno samosopryazhennogo differentsialnogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 169–177

[19] Zhdanov P.G., Shevaldin V.T., “Formosokhranyayuschie lokalnye $\cal L$-splainy, sootvetstvuyuschie proizvolnomu lineinomu differentsialnomu operatoru tretego poryadka”, Sb. tr. In-ta matematiki NAN Ukrainy, 366:2 (2008), 151–164

[20] Strelkova E.V., Shevaldin V.T., “Approksimatsiya lokalnymi splainami, tochnymi na podprostranstvakh yadra differentsialnogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 272–280

[21] Shevaldin V.T., Approksimatsiya lokalnymi splainami, Izd-vo UrO RAN, Ekaterinburg, 2014, 198 pp.

[22] Strelkova E.V., Shevaldin V.T., “O konstantakh Lebega lokalnykh parabolicheskikh splainov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 213–219 | Zbl

[23] Volkov Yu.S., Pytkeev E.G., Shevaldin V.T., “Poryadki approksimatsii lokalnymi eksponentsialnymi splainami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 135–144

[24] Shevaldina E.V., “Lokalnye $\cal L$-splainy, sokhranyayuschie yadro differentsialnogo operatora”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 111–121 | Zbl

[25] Korneichuk N.P., “O priblizhenii lokalnymi splainami minimalnogo defekta”, Ukr. mat. zhurn, 34:5 (1982), 617–621 | MR