@article{TIMM_2015_21_4_a22,
author = {S. A. Stasyuk},
title = {Approximation of certain smoothness classes of periodic functions of several variables by polynomials with regard to the tensor {Haar} system},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {251--260},
year = {2015},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a22/}
}
TY - JOUR AU - S. A. Stasyuk TI - Approximation of certain smoothness classes of periodic functions of several variables by polynomials with regard to the tensor Haar system JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 251 EP - 260 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a22/ LA - ru ID - TIMM_2015_21_4_a22 ER -
%0 Journal Article %A S. A. Stasyuk %T Approximation of certain smoothness classes of periodic functions of several variables by polynomials with regard to the tensor Haar system %J Trudy Instituta matematiki i mehaniki %D 2015 %P 251-260 %V 21 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a22/ %G ru %F TIMM_2015_21_4_a22
S. A. Stasyuk. Approximation of certain smoothness classes of periodic functions of several variables by polynomials with regard to the tensor Haar system. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 251-260. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a22/
[1] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, 2-e izd., dop., AFTs, M., 1999, 550 pp. | MR
[2] Temlyakov V.N., “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8:3 (1998), 249–265 | DOI | MR | Zbl
[3] Temlyakov V.N., “Some inequalities for multivariate Haar polynomials”, East J. Appr., 1:1 (1995), 61–72 | MR | Zbl
[4] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178 (1986), 1–112 | MR | Zbl
[5] Temlyakov V.N., Approximation of periodic functions, Comput. Math. and Anal. Ser., Nova Science Publishers, Inc., Commack, New York, 1993, 419 pp. | MR | Zbl
[6] Romanyuk A.S., Approksimativnye kharakteristiki klassov periodicheskikh funktsii mnogikh peremennykh, Pratsi Institutu matematiki NAN Ukraïni, 93, In-t matematiki NAN Ukraïni, Kiïv, 2012, 352 pp.
[7] Temlyakov V.N., “Konstruktivnye razrezhennye trigonometricheskie priblizheniya i drugie zadachi dlya funktsii smeshannoi gladkosti”, Mat. sb., 206:11 (2015), 131–160 | DOI
[8] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:2 (1955), 37–40 | Zbl
[9] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi mat. nauk, 29:3 (1974), 161–178 | MR | Zbl
[10] Kashin B.S., “Ob approksimatsionnykh svoistvakh polnykh ortonormirovannykh sistem”, Tr. MIAN SSSR, 172 (1985), 187–191 | MR | Zbl
[11] Belinskii E.S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh gladkikh periodicheskikh funktsii”, Mat. sb., 132:1 (1987), 20–27 | MR
[12] Kashin B.S., Temlyakov V.N., “O nailuchshikh $m$-chlennykh priblizheniyakh i entropii mnozhestv v prostranstve $L_1$”, Mat. zametki, 56:5 (1994), 57–86 | MR | Zbl
[13] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl
[14] Romanyuk A.S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. matematicheskaya, 67:2 (2003), 61–100 | DOI | MR | Zbl
[15] Temlyakov V.N., Constructive sparse trigonometric approximation for functions with small mixed smoothness, 2015, arXiv: math.1503.00282v1
[16] Temlyakov V.N., “Non-linear $m$-term approximation with regard to the multivariate Haar system”, East J. Appr., 4:1 (1998), 87–106 | MR | Zbl
[17] Andrianov A.V., Temlyakov V.N., “Best $m$-term approximation of functions from classes $MW_{r_{q,\alpha}}$”, Approx. Theory IX, v. 1, 1998, 7–14 | MR | Zbl
[18] Andrianov A.V., “Priblizhenie funktsii iz klassov $MH^r_p$ polinomami Khaara”, Mat. zametki, 66:3 (1999), 323–335 | DOI | MR | Zbl
[19] Andrianov A.V., “Nonlinear Haar approximation of functions with bounded mixed derivative”, Wavelet analysis and multiresolution methods (Urbana-Champaign, IL, 1999), Lecture Notes in Pure and Appl. Math., 212, New York, 2000, 27–47 | MR | Zbl
[20] Osvald P., “Ob $N$-chlennykh priblizheniyakh po sisteme Khaara v $H^s$-normakh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, ed. pod red. S. M. Nikolskogo, AFTs, M., 1999, 137–163 | MR
[21] Stasyuk S.A., “Priblizhenie funktsii mnogikh peremennykh klassov $H_p^{\Omega}$ polinomami po sisteme Khaara”, Anal. Math, 35:4 (2009), 257–271 | DOI | MR | Zbl
[22] Stasyuk S.A., “Nailuchshee $m$-chlennoe priblizhenie klassov $B^{\,r}_{\infty,{\,\theta}}$ funktsii mnogikh peremennykh polinomami po sisteme Khaara”, Ukr. mat. zhurn., 63:4 (2011), 549–555 | MR | Zbl
[23] Stasyuk S.A., “Priblizheniya klassov $\mathbf{MB} ^r_{p,\theta }$ periodicheskikh funktsii mnogikh peremennykh polinomami po sisteme Khaara”, Ukr. mat. visn., 12:1 (2015), 97–109
[24] Golubov B.I., “Nailuchshie priblizheniya funktsii v metrike $L_p$ polinomami Khaara i Uolsha”, Mat. sb., 87(129):2 (1972), 254–274 | MR | Zbl
[25] Romanyuk V.S., “Konstruktivnaya kharakteristika klassov Geldera i $m$-chlennye priblizheniya po kratnomu bazisu Khaara”, Ukr. mat. zhurn., 66:3 (2014), 349–360 | MR | Zbl