On the Szego — Taikov inequality for conjugate trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 244-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1943, Szego found the best constant and all extremal polynomials in the inequality between the uniform norm of a conjugate trigonometric polynomial and the norm of the polynomial with real coefficients. In 1990, Taikov also found the best constant by means of another method. In the present paper, we describe all extremal polynomials with complex coefficients and discuss some properties of the extremal polynomials.
Keywords: trigonometric polynomial, uniform norm, interpolation foumula.
Mots-clés : conjugate polynomial
@article{TIMM_2015_21_4_a21,
     author = {A. O. Serkov},
     title = {On the {Szego} {\textemdash} {Taikov} inequality for conjugate trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--250},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a21/}
}
TY  - JOUR
AU  - A. O. Serkov
TI  - On the Szego — Taikov inequality for conjugate trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 244
EP  - 250
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a21/
LA  - ru
ID  - TIMM_2015_21_4_a21
ER  - 
%0 Journal Article
%A A. O. Serkov
%T On the Szego — Taikov inequality for conjugate trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 244-250
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a21/
%G ru
%F TIMM_2015_21_4_a21
A. O. Serkov. On the Szego — Taikov inequality for conjugate trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 244-250. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a21/

[1] Szego G., “On conjugate trigonometric polynomials”, American J. Math., 65:4 (1943), 532–536 | DOI | MR | Zbl

[2] Taikov L.V., “O sopryazhennykh trigonometricheskikh polinomakh”, Mat. zametki, 48:4 (1990), 110–114 | MR | Zbl

[3] Gunttner R., “On the norms of conjugate trigonometric polynomials”, Acta Math. Hungar, 66:4 (1995), 269–273 | DOI | MR | Zbl

[4] Jiang T., “Asymptotic expansion of norm associated with conjugate trigonometric polynomial”, Per. Math. Hung., 27:2 (1993), 89–93 | DOI | MR | Zbl

[5] Rahman Q.I., Schmeisser G., Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, 26, The Clarendon Press; Oxford University Press, Oxford, 2002, 742 pp. | MR

[6] Arestov V.V., “Tochnye neravenstva dlya trigonometricheskikh polinomov otnositelno integralnykh funktsionalov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 1–15

[7] Arestov V.V., Glazyrina P.Yu., “Integralnye neravenstva dlya algebraicheskikh i trigonometricheskikh polinomov”, Dokl. RAN, 422:6 (2012), 727–731 | MR

[8] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl

[9] Zigmund A., Trigonometricheskie ryady, 2, Mir, M., 1965, 537 pp. | MR

[10] Andreani R., Dimitrov D.K., “An extremal nonegative sine polynomial”, Rocky Mount. J. Math., 33:3 (2003), 759–774 | DOI | MR | Zbl