Two-scale relations for $B$-$\mathcal L$-splines with uniform knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 234-243

Voir la notice de l'article provenant de la source Math-Net.Ru

Analogs of scaling relations are constructed for basis exponential splines with uniform knots corresponding to a linear differential operator of arbitrary order with constant coefficients and real pairwise distinct roots of the characteristic polynomial; the construction does not employ techniques from harmonic analysis.
Keywords: basis exponential splines, two-scale relations, scaling function, linear differential operator.
@article{TIMM_2015_21_4_a20,
     author = {E. G. Pytkeev and V. T. Shevaldin},
     title = {Two-scale relations for $B$-$\mathcal L$-splines with uniform knots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {234--243},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - V. T. Shevaldin
TI  - Two-scale relations for $B$-$\mathcal L$-splines with uniform knots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 234
EP  - 243
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/
LA  - ru
ID  - TIMM_2015_21_4_a20
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A V. T. Shevaldin
%T Two-scale relations for $B$-$\mathcal L$-splines with uniform knots
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 234-243
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/
%G ru
%F TIMM_2015_21_4_a20
E. G. Pytkeev; V. T. Shevaldin. Two-scale relations for $B$-$\mathcal L$-splines with uniform knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 234-243. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/