Two-scale relations for $B$-$\mathcal L$-splines with uniform knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 234-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Analogs of scaling relations are constructed for basis exponential splines with uniform knots corresponding to a linear differential operator of arbitrary order with constant coefficients and real pairwise distinct roots of the characteristic polynomial; the construction does not employ techniques from harmonic analysis.
Keywords: basis exponential splines, two-scale relations, scaling function, linear differential operator.
@article{TIMM_2015_21_4_a20,
     author = {E. G. Pytkeev and V. T. Shevaldin},
     title = {Two-scale relations for $B$-$\mathcal L$-splines with uniform knots},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {234--243},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - V. T. Shevaldin
TI  - Two-scale relations for $B$-$\mathcal L$-splines with uniform knots
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 234
EP  - 243
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/
LA  - ru
ID  - TIMM_2015_21_4_a20
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A V. T. Shevaldin
%T Two-scale relations for $B$-$\mathcal L$-splines with uniform knots
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 234-243
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/
%G ru
%F TIMM_2015_21_4_a20
E. G. Pytkeev; V. T. Shevaldin. Two-scale relations for $B$-$\mathcal L$-splines with uniform knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 234-243. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/

[1] Chui Ch., Vvedenie v veivlety, per. s angl., Mir, 2001, 412 pp.

[2] Novikov I.Ya., Protasov V.Yu., Skopina M.L., Teoriya vspleskov, Fizmatlit, M., 2005, 616 pp. | MR

[3] Malla C., Veivlety v obrabotke splainov, Mir, M., 2005, 671 pp.

[4] Dobeshi I., 10 lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 461 pp.

[5] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[6] Morsche H.G. ter, Interpolation and extremal properties of L-spline functions, Dissertation, Technische Hogeschool Eindhoven, Eindhoven, 1982, 124 pp. | MR | Zbl

[7] Shevaldin V.T., Approksimatsiya lokalnymi splainami, UrO RAN, Ekaterinburg, 2014, 198 pp.

[8] Shevaldin V.T., “Dvukhmasshtabnye sootnosheniya dlya analogov bazisnykh splainov malykh stepenei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 319–323

[9] Shevaldin V.T., “Kalibrovochnye sootnosheniya dlya B-L-splainov”, Sovremennye problemy matematiki, tez. 42-i Vseross. mol. shk.-konf., In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2011, 151–153

[10] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–173 | MR

[11] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. RAN. Seriya matematicheskaya, 15:3 (1951), 219–242 | Zbl

[12] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN, 164 (1983), 203–240 | MR | Zbl

[13] Prasolov V.V., Mnogochleny, MTsNMO, M., 2003, 336 pp.