Two-scale relations for $B$-$\mathcal L$-splines with uniform knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 234-243
Voir la notice de l'article provenant de la source Math-Net.Ru
Analogs of scaling relations are constructed for basis exponential splines with uniform knots corresponding to a linear differential operator of arbitrary order with constant coefficients and real pairwise distinct roots of the characteristic polynomial; the construction does not employ techniques from harmonic analysis.
Keywords:
basis exponential splines, two-scale relations, scaling function, linear differential operator.
@article{TIMM_2015_21_4_a20,
author = {E. G. Pytkeev and V. T. Shevaldin},
title = {Two-scale relations for $B$-$\mathcal L$-splines with uniform knots},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {234--243},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/}
}
TY - JOUR AU - E. G. Pytkeev AU - V. T. Shevaldin TI - Two-scale relations for $B$-$\mathcal L$-splines with uniform knots JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 234 EP - 243 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/ LA - ru ID - TIMM_2015_21_4_a20 ER -
E. G. Pytkeev; V. T. Shevaldin. Two-scale relations for $B$-$\mathcal L$-splines with uniform knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 234-243. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a20/