On the efficiency of solving optimal control problems by means of Fast Automatic Differentiation technique
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 20-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A efficient method is introduced for solving the problems of optimal control of thermal processes with phase transitions. The following statement is formulated and proved: the time of computing the components of the gradient of the objective function by means of the proposed method does not exceed the time of computing two values of the function.
Keywords: optimal control, fast automatic differentiation, Stefan problem.
Mots-clés : gradient, adjoint problem
@article{TIMM_2015_21_4_a2,
     author = {A. F. Albu and V. I. Zubov},
     title = {On the efficiency of solving optimal control problems by means of {Fast} {Automatic} {Differentiation} technique},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {20--29},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a2/}
}
TY  - JOUR
AU  - A. F. Albu
AU  - V. I. Zubov
TI  - On the efficiency of solving optimal control problems by means of Fast Automatic Differentiation technique
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 20
EP  - 29
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a2/
LA  - ru
ID  - TIMM_2015_21_4_a2
ER  - 
%0 Journal Article
%A A. F. Albu
%A V. I. Zubov
%T On the efficiency of solving optimal control problems by means of Fast Automatic Differentiation technique
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 20-29
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a2/
%G ru
%F TIMM_2015_21_4_a2
A. F. Albu; V. I. Zubov. On the efficiency of solving optimal control problems by means of Fast Automatic Differentiation technique. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 20-29. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a2/

[1] Albu A.F., Gorbunov V.I., Zubov V.I., “Optimalnoe upravlenie protsessom plavleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 40:4 (2000), 517–531 | MR | Zbl

[2] White R.E., “An enthalpy formulation of the Stephan problem”, SIAM J. Numer. Analys., 19:6 (1982), 1129–1157 | DOI | MR | Zbl

[3] Albu A.F., Zubov V.I., “O modifikatsii odnoi skhemy dlya rascheta protsessa plavleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 41:9 (2001), 1434–1443 | MR | Zbl

[4] Albu A.F., Zubov V.I., “Usovershenstvovannyi algoritm rascheta protsessov s fazovymi perekhodami”, Metody optimizatsii i ikh prilozheniya, Tr. XIII Mezhdunar. shk.-seminara, v. 2, ISEM SO RAN, Irkutsk, 2005, 51–56

[5] Evtushenko Y.G., “Computation of exact gradients in distributed dynamic systems”, Optim. Methods Softw., 9:1-3 (1998), 45–75 | DOI | MR | Zbl

[6] Evtushenko Yu.G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, VTs im. A.A. Dorodnitsyna RAN, M., 2013, 144 pp.

[7] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979, 536 pp. | MR

[8] Albu A.F., Zubov V.I., “Issledovanie zadachi optimalnogo upravleniya protsessom kristallizatsii veschestva v novoi postanovke”, Zhurn. vychisl. matematiki i mat. fiziki, 54:5 (2014), 734–745 | DOI | Zbl

[9] Albu A.F., Zubov V.I., “Issledovanie zadachi optimalnogo upravleniya protsessom kristallizatsii veschestva v novoi postanovke dlya ob'ekta slozhnoi geometricheskoi formy”, Zhurn. vychisl. matematiki i mat. fiziki, 54:12 (2014), 1879–1893 | DOI | MR | Zbl