Biorthogonal bases of multiwavelets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 223-233
Cet article a éte moissonné depuis la source Math-Net.Ru
A method for the construction of biorthogonal bases of multiwavelets from known bases of multiscaling functions is given. It is similar to the method presented in my 2014 paper coauthored with N.I. Chernykh and is based on the same principle: in the construction of multiwavelets based on $k$ multiscaling functions, an analog of the vector product of vectors in a $2k$-dimensional space is used.
Keywords:
multiwavelet, mask, scaling function, multiresolution analysis.
Mots-clés : biorthogonal basis
Mots-clés : biorthogonal basis
@article{TIMM_2015_21_4_a19,
author = {E. A. Pleshcheva},
title = {Biorthogonal bases of multiwavelets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {223--233},
year = {2015},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a19/}
}
E. A. Pleshcheva. Biorthogonal bases of multiwavelets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 223-233. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a19/
[1] Plescheva E.A., Chernykh N.I., “Postroenie ortogonalnykh bazisov multivspleskov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 221–230
[2] Dobeshi I., Desyat lektsii po veivletam, Dinamika, M.; Izhevsk, 2001, 464 pp.
[3] Keinert F., Wavelets and multiwavelets, CRC Press, London; New York, 2003, 275 pp. | MR
[4] Scopina M., “On construction of multivariate wavelet frames”, Appl. Comput. Harmon. Anal., 27:1 (2009), 55–72 | DOI | MR
[5] Krivoshein A.V., “On construction of multivariate symmetric MRA-based wavelets”, Appl. Comput. Harmon. Anal., 36:2 (2014), 215–238 | DOI | MR | Zbl