Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 212-222

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an interpolation problem with minimum value of the $L_p$-norm ($1\leq p\infty$) of the Laplace operator of interpolants for a class of interpolated sequences that are bounded in the $l_p$-norm. The data are interpolated at nodes of the grid formed by points from $\mathbb{R}^n$ with integer coordinates. It is proved that, if $1\leq p$$n/2$, then the $L_p$-norm of the Laplace operator of the interpolant can be arbitrarily small for any sequence that is interpolated. Two-sided estimates for the $L_2$-norm of the Laplace operator of the best interpolant are found for the case $n=2$.
Mots-clés : interpolation
Keywords: Laplace operator, Sobolev space, embedding.
@article{TIMM_2015_21_4_a18,
     author = {S. I. Novikov},
     title = {Interpolation by functions from a {Sobolev} space with minimum $L_p$-norm of the {Laplace} operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {212--222},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a18/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 212
EP  - 222
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a18/
LA  - ru
ID  - TIMM_2015_21_4_a18
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 212-222
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a18/
%G ru
%F TIMM_2015_21_4_a18
S. I. Novikov. Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 212-222. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a18/