On the order of the uniform convergence of partial cubic sums of multiple trigonometric Fourier series on the function classes $H_{1,m}^{l}[\omega]$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 161-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A solution of the problem on the exact order of deviation in the uniform metric of partial cubic sums of multiple trigonometric Fourier series on classes of functions with a given majorant for the total modulus of smoothness of the $l$th order in $L_1(\mathbb{T}^{m}) $ is presented, where $l\in \mathbb{N}$, $m\geq 1$.
Keywords: multiple trigonometric Fourier series, partial cubic sums, order of uniform convergence, total modulus of smoothness, exact order of deviation in the uniform metric.
@article{TIMM_2015_21_4_a15,
     author = {N. A. Il'yasov},
     title = {On the order of the uniform convergence of partial cubic sums of multiple trigonometric {Fourier} series on the function classes $H_{1,m}^{l}[\omega]$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {161--177},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a15/}
}
TY  - JOUR
AU  - N. A. Il'yasov
TI  - On the order of the uniform convergence of partial cubic sums of multiple trigonometric Fourier series on the function classes $H_{1,m}^{l}[\omega]$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 161
EP  - 177
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a15/
LA  - ru
ID  - TIMM_2015_21_4_a15
ER  - 
%0 Journal Article
%A N. A. Il'yasov
%T On the order of the uniform convergence of partial cubic sums of multiple trigonometric Fourier series on the function classes $H_{1,m}^{l}[\omega]$
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 161-177
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a15/
%G ru
%F TIMM_2015_21_4_a15
N. A. Il'yasov. On the order of the uniform convergence of partial cubic sums of multiple trigonometric Fourier series on the function classes $H_{1,m}^{l}[\omega]$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 161-177. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a15/

[1] Il'yasov N.A., “On the order of magnitude of the uniform convergence of multiple trigonometric Fourier series with respect to cubes on the function classes $H^l_{p,m}[\omega ]$”, Anal. Math., 28:1 (2002), 25–42 | DOI | MR | Zbl

[2] Ilyasov N.A., “O poryadke ravnomernoi skhodimosti ryadov Fure periodicheskikh funktsii iz klassov $H^l_p[\omega ]$”, Vestn. Bakins. un-ta. Cer. fiz.-mat.nauk, 1998, no. 2, 158–170

[3] Ulyanov P.L., “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Mat. sb., 72(114):2 (1967), 193–225

[4] Konyushkov A.A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Mat. sb., 44(86):1 (1958), 53–84

[5] Yano K., “On Hardy and Littlewood's theorem”, Proc. Japan. Acad., 33:2 (1957), 73–74 | DOI | MR | Zbl

[6] Geronimus Ya.L., “O nekotorykh svoistvakh funktsii klassa $L_p$”, Izv. vuzov. Matematika, 1958, no. 1, 24–32 | MR | Zbl

[7] Temirgaliev N.T., “O svyazi teorem vlozheniya s ravnomernoi skhodimostyu kratnykh ryadov Fure”, Mat. zametki, 12:2 (1972), 139–148 | MR | Zbl

[8] Zhizhiashvili L.V., “Sopryazhennye funktsii dvukh peremennykh i dvoinye ryady Fure”, Dokl. AN SSSR, 149:4 (1963), 765–768

[9] Zigmund A., Trigonometricheskie ryady, v 2 t., 1,2, Mir, M., 1965, 615,537 pp. | MR

[10] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 407 pp. | MR

[11] Kolyada V.I., “O suschestvennoi nepreryvnosti summiruemykh funktsii”, Mat. sb., 108(150):3 (1979), 326–349 | MR | Zbl

[12] Stein I.M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 342 pp. | MR

[13] Kolyada V.I., “O vlozhenii v klassy nepreryvnykh funktsii mnogikh peremennykh”, Mat. sb., 99(141):3 (1976), 421–432 | MR

[14] Temirgaliev N.T., “Ob odnoi teoreme vlozheniya”, Izv. vuzov. Matematika, 1973, no. 7, 103–111 | MR | Zbl

[15] Timan A.F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.

[16] Temirgaliev N.T., “O vlozhenii nekotorykh klassov funktsii v $C\left( [0,2\pi ]^m\right)$”, Izv. vuzov. Matematika, 1978, no. 8(195), 88–90 | MR | Zbl

[17] Kolyada V.I., “Teoremy vlozheniya i neravenstva raznykh metrik dlya nailuchshikh priblizhenii”, Mat. sb., 102(144):2 (1977), 195–215 | MR | Zbl

[18] Ilyasov N.A., “K obratnoi teoreme teorii priblizhenii periodicheskikh funktsii v raznykh metrikakh”, Mat. zametki, 52:2 (1992), 53–61 | MR | Zbl

[19] Ilyasov N.A., “O poryadke ubyvaniya ravnomernykh modulei gladkosti na klassakh funktsii $E_{p,m}[\varepsilon ]$”, Mat. zametki, 78:4 (2005), 519–536 | DOI | MR | Zbl

[20] Stechkin S.B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 15:3 (1951), 219–242 | Zbl

[21] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov. I”, Mat. sb., 29(71):1 (1951), 225–232 | MR | Zbl

[22] Stechkin S.B., “Ob absolyutnoi skhodimosti ryadov Fure (vtoroe soobschenie)”, Izv. AN SSSR. Ser. matematicheskaya, 19:4 (1955), 221–246 | Zbl

[23] Ilyasov N.A., “O priblizhenii periodicheskikh funktsii srednimi Feiera - Zigmunda v raznykh metrikakh”, Mat. zametki, 48:4 (1990), 48–57 | MR | Zbl

[24] Geit V.E., “O tochnosti nekotorykh neravenstv v teorii priblizhenii”, Mat. zametki, 10:5 (1971), 571–582 | MR

[25] Geit V.E., “O strukturnykh i konstruktivnykh svoistvakh funktsii i ee sopryazhennoi v $L$”, Izv. vuzov. Matematika, 1972, no. 7(122), 19–30 | MR | Zbl

[26] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[27] Stechkin S.B., “Ob absolyutnoi skhodimosti ryadov Fure”, Izv. AN SSSR. Ser. matematicheskaya, 17:2 (1953), 87–98 | Zbl

[28] Geit V.E., “Ob usloviyakh vlozheniya klassov $H^\omega _{k,\mathbb{R}}$ i $\widetilde{H}^\omega _{k,\mathbb{R}}$”, Mat. zametki, 13:2 (1973), 169–178 | MR

[29] Andrienko V.A., “Vlozhenie nekotorykh klassov funktsii”, Izv. AN SSSR. Ser. matematicheskaya, 31:6 (1967), 1311–1326 | MR

[30] Ulyanov P.L., “Vlozhenie nekotorykh klassov funktsii $H^\omega_p$”, Izv. AN SSSR. Ser. matematicheskaya, 32:3 (1968), 649–686 | Zbl

[31] Simonov B.V., Tikhonov S.Yu., “Teoremy vlozheniya v konstruktivnoi teorii priblizhenii”, Mat. sb., 199:9 (2008), 107–147 | DOI | MR

[32] Potapov M.K., Simonov B.V., Tikhonov S.Yu., “O klassakh Besova, Besova - Nikolskogo i ob otsenkakh smeshannykh modulei gladkosti drobnykh proizvodnykh”, Tr. MIRAN, 243 (2003), 244–256 | MR | Zbl

[33] Ilyasov N.A., “Teoremy vlozheniya dlya nekotorykh klassov periodicheskikh funktsii v $L_p,\ 1\le p\le \infty $”, Dokl. AN SSSR, 276:6 (1984), 1301–1304 | MR | Zbl

[34] Ilyasov N.A., “Priblizhenie periodicheskikh funktsii srednimi Zigmunda”, Mat. zametki, 39:3 (1986), 367–382 | MR | Zbl

[35] Hardy G.H., Littlewood J.E., “A convergence criterion for Fourier series”, Math. Zeitschr., 28:3 (1928), 612–634 | DOI | MR | Zbl

[36] Izumi Shin-ichi, “Some trigonometrical series. XV”, Proc. Japan. Acad., 31:7 (1955), 399–401 | DOI | MR | Zbl

[37] Hardy G.H., Littlewood J.E., “Some properties of fractional integrals. I.”, Mathem. Zeitschr., 27:4 (1928), 565–606 | DOI | MR | Zbl

[38] Zhuk V.V., “O poryadke priblizheniya nepreryvnoi $2\pi $-periodicheskoi funktsii pri pomoschi chastnykh summ ee ryada Fure”, Dokl. AN SSSR, 190:5 (1970), 1015–1018 | Zbl

[39] Zhuk V.V., Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982, 366 pp. | MR

[40] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[41] Geronimus Ya.L., “O nekotorykh teoremakh vlozheniya”, Izv. vuzov. Matematika, 1965, no. 6(49), 53–62 | MR | Zbl

[42] Golubov B.I., “O nepreryvnykh funktsiyakh ogranichennoi $p$-variatsii”, Mat. zametki, 1:3 (1967), 305–312 | MR | Zbl

[43] Kolyada V.I., “O sootnosheniyakh mezhdu modulyami nepreryvnosti v raznykh metrikakh”, Tr. MIAN, 181 (1988), 117–136 | MR

[44] Konyushkov A.A., “O nailuchshikh priblizheniyakh pri preobrazovanii koeffitsientov Fure metodom srednikh arifmeticheskikh i o ryadakh Fure s neotritsatelnymi koeffitsientami”, Sib. mat. zhurn., 3:1 (1962), 56–78 | Zbl

[45] Garsia A.M., “A remarkable inequality and the uniform convergence of Fourier series”, Indiana Univ. Math. J., 25:1 (1976), 85–102 | DOI | MR | Zbl

[46] Oehring Ch., “On Garsia's criterion for uniform convergence of Fourier series”, J. Austral. Math. Soc. Ser. A, 51:2 (1991), 305–322 | DOI | MR

[47] Garsia A.M., “Combinatorial inequalities and smoothness of functions”, Bull. Amer. Math. Soc., 82:2 (1976), 157–170 | DOI | MR | Zbl

[48] Neugebauer C.J., “The $L^p$ modulus of continuity and Fourier series of Lipschitz functions”, Proc. Amer. Math. Soc., 64:1 (1977), 71–76 | MR | Zbl

[49] Aljancic S., Tomic M., “Uber den stetigkeitsmodul von Fourier-reihen mit monotonen koeffizienten”, Math. Zeitschr., 88:3 (1965), 274–284 | DOI | MR | Zbl

[50] Lorentz G.G., “Fourier-Koeffizienten und Funktionenklassen”, Math. Zeitschr., 51:2 (1948), 135–149 | DOI | MR | Zbl