@article{TIMM_2015_21_4_a14,
author = {D. O. Zykov},
title = {Coefficients of trigonometric polynomials under a one-sided constraint},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {152--160},
year = {2015},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/}
}
D. O. Zykov. Coefficients of trigonometric polynomials under a one-sided constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 152-160. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/
[1] Milovanovic G.V., Mitrinovic D.S., Rassias Th.M., Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, Singapore, 1994, 836 pp. | MR | Zbl
[2] Polia G., Segë G., Zadachi i teoremy iz analiza, v 2 t., Nauka, M., 1978, 824 pp.
[3] Arestov V.V., Mendelev A.S., “Trigonometric polynomials that deviate the least from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | MR | Zbl
[4] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl
[5] Arestov V.V., Kondratev V.P., “Ob odnoi ekstremalnoi zadache dlya neotritsatelnykh trigonometricheskikh polinomov”, Mat. zametki, 47:1 (1990), 15–28 | MR
[6] Revesz Sz.Gy., “A Fejer type extremal problem”, Acta Math. Hungar., 57:3-4 (1991), 279–283 | DOI | MR | Zbl
[7] Revesz Sz., “On some extremal problems of Landau”, Serdica Math. J., 33:1 (2007), 125–162 | MR | Zbl
[8] Fejer L., “Uber trigonometrische Polynome”, J. Angew. Math., 146 (1915), 53–82 | MR | Zbl
[9] Egervary E.V, Szasz 0., “Einige Extremalprobleme im Bereiche der trigonometrischen Polynome”, Mathematische Zeitschrift, 27 (1928), 641–652 | DOI | MR | Zbl