Coefficients of trigonometric polynomials under a one-sided constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 152-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For odd trigonometric polynomials bounded from above by the function $\varphi(x)=x$ on the intervals $[0, \pi]$ and $[0, 2 \pi]$, we study the maximum and minimum values of coefficients. We obtain two-sided estimates for the first coefficient and find the asymptotic behavior of its maximum and minimum values with respect to the order of the polynomial. We estimate the leading coefficients.
Keywords: trigonometric polynomial, one-sided constraints.
@article{TIMM_2015_21_4_a14,
     author = {D. O. Zykov},
     title = {Coefficients of trigonometric polynomials under a one-sided constraint},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--160},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/}
}
TY  - JOUR
AU  - D. O. Zykov
TI  - Coefficients of trigonometric polynomials under a one-sided constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 152
EP  - 160
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/
LA  - ru
ID  - TIMM_2015_21_4_a14
ER  - 
%0 Journal Article
%A D. O. Zykov
%T Coefficients of trigonometric polynomials under a one-sided constraint
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 152-160
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/
%G ru
%F TIMM_2015_21_4_a14
D. O. Zykov. Coefficients of trigonometric polynomials under a one-sided constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 152-160. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/

[1] Milovanovic G.V., Mitrinovic D.S., Rassias Th.M., Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, Singapore, 1994, 836 pp. | MR | Zbl

[2] Polia G., Segë G., Zadachi i teoremy iz analiza, v 2 t., Nauka, M., 1978, 824 pp.

[3] Arestov V.V., Mendelev A.S., “Trigonometric polynomials that deviate the least from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | MR | Zbl

[4] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl

[5] Arestov V.V., Kondratev V.P., “Ob odnoi ekstremalnoi zadache dlya neotritsatelnykh trigonometricheskikh polinomov”, Mat. zametki, 47:1 (1990), 15–28 | MR

[6] Revesz Sz.Gy., “A Fejer type extremal problem”, Acta Math. Hungar., 57:3-4 (1991), 279–283 | DOI | MR | Zbl

[7] Revesz Sz., “On some extremal problems of Landau”, Serdica Math. J., 33:1 (2007), 125–162 | MR | Zbl

[8] Fejer L., “Uber trigonometrische Polynome”, J. Angew. Math., 146 (1915), 53–82 | MR | Zbl

[9] Egervary E.V, Szasz 0., “Einige Extremalprobleme im Bereiche der trigonometrischen Polynome”, Mathematische Zeitschrift, 27 (1928), 641–652 | DOI | MR | Zbl