Coefficients of trigonometric polynomials under a one-sided constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 152-160

Voir la notice de l'article provenant de la source Math-Net.Ru

For odd trigonometric polynomials bounded from above by the function $\varphi(x)=x$ on the intervals $[0, \pi]$ and $[0, 2 \pi]$, we study the maximum and minimum values of coefficients. We obtain two-sided estimates for the first coefficient and find the asymptotic behavior of its maximum and minimum values with respect to the order of the polynomial. We estimate the leading coefficients.
Keywords: trigonometric polynomial, one-sided constraints.
@article{TIMM_2015_21_4_a14,
     author = {D. O. Zykov},
     title = {Coefficients of trigonometric polynomials under a one-sided constraint},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--160},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/}
}
TY  - JOUR
AU  - D. O. Zykov
TI  - Coefficients of trigonometric polynomials under a one-sided constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 152
EP  - 160
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/
LA  - ru
ID  - TIMM_2015_21_4_a14
ER  - 
%0 Journal Article
%A D. O. Zykov
%T Coefficients of trigonometric polynomials under a one-sided constraint
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 152-160
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/
%G ru
%F TIMM_2015_21_4_a14
D. O. Zykov. Coefficients of trigonometric polynomials under a one-sided constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 152-160. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a14/