Nonorthogonal harmonic wavelets and their application to the solution of the Neumann problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 136-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct harmonic wavelets and give a bound for the convergence rate of their partial sums in the spaces of harmonic functions introduced in the paper. These wavelets can be used for the solution of the Neumann problem.
Keywords: Neumann problem, harmonic wavelets, basis of spaces of harmonic functions.
@article{TIMM_2015_21_4_a13,
     author = {G. A. Dubosarskii},
     title = {Nonorthogonal harmonic wavelets and their application to the solution of the {Neumann} problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {136--151},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a13/}
}
TY  - JOUR
AU  - G. A. Dubosarskii
TI  - Nonorthogonal harmonic wavelets and their application to the solution of the Neumann problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 136
EP  - 151
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a13/
LA  - ru
ID  - TIMM_2015_21_4_a13
ER  - 
%0 Journal Article
%A G. A. Dubosarskii
%T Nonorthogonal harmonic wavelets and their application to the solution of the Neumann problem
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 136-151
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a13/
%G ru
%F TIMM_2015_21_4_a13
G. A. Dubosarskii. Nonorthogonal harmonic wavelets and their application to the solution of the Neumann problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 136-151. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a13/

[1] Subbotin Yu.N., Chernykh N.I., “Vspleski periodicheskie, garmonicheskie i analiticheskie v kruge s netsentralnym otverstiem”, Tr. Mezhdunar. let. mat. shkoly S.B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 129–149

[2] Dubosarskii G.A., “Garmonicheskie vspleski v mnogosvyaznoi oblasti s krugovymi granitsami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 99–114 | MR

[3] Dubosarskii G.A., “Garmonicheskie vspleski v mnogosvyaznoi oblasti s krugovymi granitsami i ikh prilozheniya k zadacham matematicheskoi fiziki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 109–124 | MR

[4] Goluzin G.M., “Reshenie osnovnykh ploskikh zadach matematicheskoi fiziki dlya sluchaya uravneniya Laplace'a i mnogosvyaznykh oblastei, ogranichennykh okruzhnostyami (metod funktsionalnykh uravnenii)”, Mat. sb., 41:2 (1934), 246–276

[5] Subbotin Yu.N., Chernykh N.I., “Vspleski v prostranstvakh garmonicheskikh funktsii”, Izv. RAN. Ser. matematicheskaya, 64:1 (2000), 145–174 | DOI | MR | Zbl

[6] Offin D., Oskolkov K., “A note on orthonormal polynomial bases and wavelets”, Constr. approx., 9:2 (1993), 319–325 | DOI | MR | Zbl