Exact solutions of an optimal stabilization problem for systems of differential equations with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 124-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The direct problem of optimal stabilization for systems of differential equations with aftereffect is related to finding a solution of a boundary value problem for a nonlinear matrix functional differential equation. In the construction of exact solutions of the optimal stabilization problem, it is proposed to pass to the inverse problem of finding an absolutely continuous component of a Stieltjes measure. The inverse problem is described by a matrix linear integral equation of the second kind. Sufficient conditions are obtained under which the inverse problem can be reduced to a boundary value problem for an autonomous linear system of ordinary differential equations. In the solution of this problem, the Laplace transform is used.
Keywords: differential equations with aftereffect, stability of motions, optimal stabilization, differential equations in a Banach space, functional differential equations, boundary value problem for ordinary differential equations
Mots-clés : Riccati equation, Laplace transform.
@article{TIMM_2015_21_4_a12,
     author = {Yu. F. Dolgii},
     title = {Exact solutions of an optimal stabilization problem for systems of differential equations with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {124--135},
     year = {2015},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a12/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
TI  - Exact solutions of an optimal stabilization problem for systems of differential equations with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 124
EP  - 135
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a12/
LA  - ru
ID  - TIMM_2015_21_4_a12
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%T Exact solutions of an optimal stabilization problem for systems of differential equations with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 124-135
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a12/
%G ru
%F TIMM_2015_21_4_a12
Yu. F. Dolgii. Exact solutions of an optimal stabilization problem for systems of differential equations with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 4, pp. 124-135. http://geodesic.mathdoc.fr/item/TIMM_2015_21_4_a12/

[1] Krasovskii N.N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 26:1 (1962), 39–51 | MR

[2] Krasovskii N.N., “Ob optimalnom regulirovanii v lineinykh sistemakh s zapazdyvaniem vremeni”, Sib. mat. zhurn., 4:2 (1963), 295–302 | MR

[3] Gibson J.S., “Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations”, SIAM J. Control Optim., 21:1 (1983), 95–139 | DOI | MR | Zbl

[4] Krasovskii N.N., Osipov Yu.S., “O stabilizatsii dvizhenii upravlyaemogo ob'ekta s zapazdyvaniem v sisteme regulirovaniya”, Izv. AN SSSR. Tekhn. kibernetika, 1963, no. 6, 3–15 | MR | Zbl

[5] Osipov Yu.S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | Zbl

[6] Gabelaya A.G., Ivanenko V.I., Odarich O.N., “Stabilizatsiya lineinykh avtonomnykh sistem s zapazdyvaniem”, Avtomatika i telemekhanika, 1976, no. 8, 12–16 | MR

[7] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[8] Delfour M.C., McCalla C., Mitter S.K., “Stability and the infinite-time quadratic cost problem for linear hereditary differential systems”, SIAM J. Control, 13:1 (1975), 48–88 | DOI | MR | Zbl

[9] Yanushevskii R.T., Upravlenie ob'ektami s zapazdyvaniem, Nauka, M., 1978, 416 pp. | MR

[10] Kim A.V., Lozhnikov A.B., “Lineino-kvadratichnye zadachi upravleniya dlya sistem s posledeistviem. Tochnye resheniya”, Avtomatika i telemekhanika, 2000, no. 7, 15–31 | MR

[11] Dolgii Yu.F., “K stabilizatsii lineinykh avtonomnykh sistem differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Avtomatika i telemekhanika, 2007, no. 10, 92–105 | MR | Zbl

[12] Kolmanovskii V.B., “Tochnye formuly v zadache upravleniya nekotorymi sistemami s posledeistviem”, Prikl. matematika i mekhanika, 37:2 (1973), 228–235 | MR | Zbl

[13] Dolgii Yu.F., “Analiticheskie resheniya zadachi optimalnoi stabilizatsii dlya sistem differentsialnykh uravnenii s posledeistviem”, Tr. XII Vseros. soveschaniya po problemam upravleniya, IPU RAN, M., 2014, 1349–1362

[14] Petrovskii I.G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, GITTL, M.; L., 1952, 232 pp.